فهرست مطالب
عنوان صفحه
فصل اول: آشنایی کلی با مکان کارآموزی
معرفی شرکت دانش هوشیار الکترونیک 2
فصل دوم: ارزیابی بخشهای مرتبط با رشته علمی کارآموز
تولید کنندگان، بخش طراحی و ساخت، بخش تعمیرات و نگهداری 4
نتیجه گیری 4
پیشنهاد برای بهبود کار در صنعت الکترونیک 5
فصل سوم
مقدمه : آشنایی با ساخت پیوند p-n 8
ساختمان کریستالی نیمه هادی 10
ترانزیستورها 13
ترانزیستور دوقطبی پیوندی 15
ترانزیستور اثر میدان پیوندی(JFET) 15
ترانزیستور اثر میدان MOS 18
ساختار و طرز کار ترانزیستور اثر میدانی – فت 19
شکل و پایه های ترانزیستورها 20
آشنایی با آی سی های سری 7400 29
TTL 29
CMOS 31
خازن 32
خازنهای قطب دار 34
خازن های تانتالیوم 35
خازنهای بدون قطب 36
کد رنگی خازن ها 37
خازن های متغیر 39
خازن های تریمر 39
سنسورها 40
حسگرهای مافوق صوت 42
حسگرهای تماسی 44
حسگرهای هم جواری 44
حسگرهای دور برد 45
حسگر نوری 46
آشنائی با LCD 47
رله ها 53
منابع تغذیه 55
منطق دیجیتال 57
سیستم های دیجیتال 60
مدارهای ترتیبی 64
حافظه های الکترونیکی 67
کار با مولتی متر 70
کار با اسیلوسکوپ 74
فصل چهارم: چند آی سی پر کار برد
آی سی 555 83
آی سی موتور درایور ال 298 84
فصل اول :
آشنایی کلی با مکان کارآموزی
شرکت دانش هوشیارالکترونیک یکی از معتبرترین شرکت های الکترونیکی در استان بوشهر می باشد این شرکت در بافت قدیمی و در بازار این بافت قرار دارد. (خیابان امام خمینی)
این شرکت فعالیت های خود را از 1378 آغاز کرده و در تفکر کلی مدیریتی این شرکت همیشه هدف گذاری و رشد پی در پی این شرکت مورد توجه بوده که با تلاش پیگیر یا مدیریت صحیح به این مهم دست یافته و افق روشن و امیدوارکننده ای در مقابل این شرکت دیده می شود.
فصل دوم:
ارزیابی بخش های مرتبط با رشته علمی کارآموز
به طور عمده سه بخش مرتبط به قرار زیر می باشند:
1- تولید کنندگان قطعات الکتریکی و تولید کننده گان دستگاه های الکترونیکی که تولیدات آنها در این شرکت در معرض فروش قرار می گیرد.
2- بخش طراحی و ساخت دستگاه های الکترونیکی که در این شرکت توسط مهندسان مجرب کار طراحی و ساخت پروژه ها برای ارگانها، شرکت هاو افراد شخصی صورت می گرفت.
3- بخش تعمیرات و پشتیبانی دستگاه های تولیدی و همچنین تولیدات دیگر شرکت ها که در این شرکت در معرض عرضه قرار می گرفت.
نتیجه گیری
امروزه با توسعه صنایع در کشور،فرصت های شغلی زیادی برای مهندسین برق فراهم شده است و اگر می بینیم که با این وجودبعضی از فارغ التحصیلان این رشته بی کار هستند و به دلیل این است که این افراد یا فقط در تهران دنبال کار می گردند یا در دوران تحصیل به جای یادگیری عمیق دروس و در نتیجه کسب توانایی های لازم تنها واحد های درسی خود را گذرانده اند.
همچنین یک مهندس خوب باید کارآفرین باشد یعنی به دنبال استخدام در موسسه یا وزارت خانه ای نباشد بلکه به یاری آگاهی خود، نیازهای فنی و صنعتی کشور را یافته و باطراحی سیستم ها ومدارهای خاص این نیاز را بر طرف سازد. کاری که بعضی از فارغ التحصیلان ما انجام داده و خوش بختانه موفق نیز بودند.
اگر یک فارغ التحصیل برق دارای توانایی های لازم باشد، با مشکل بی کاری روبرو نخواهد شد. در حقیقت امروزه مشکل اصلی این است که بیشتر فارغ التحصیلان توانمند و با استعداد این رشته به خاغرج از کشور مهاجرت می کنند و ما اکنون با کمبود نیروهای کار آمد در این رشته روبرو هستیم.
یکی از اساتید مهندسی برق دانشگاه علم و صنعت ایران نیز در مورد فرصت شغلی فارغ التحصیلان این رشته می گوید: طبق نظر کارشناسان و متخصصان انرژی در کشور با توجه به نیاز فزاینده به انرژی در جهان کنونی و همچنین نرخ رشد انرژی الکتریکی در کشور نیاز به فارغ التحصیلان این رشته بیش از قبل مورد احتیاج است.
پیشنهادات برای بهبود کار در صنعت الکترونیک
1- خودکفایی در طراحی و ساخت تجهیزات الکترونیکی
2- کاهش هزینه های ساخت
3- بهبود کیفیت دستگاههای ساخت داخل
4- توسعه فناوری تولید
5- توسعه راهکارها و فرهنگ مدیریت
6- استفاده بهینه از امکانات مراکز تحقیقاتی و صنعتی کشور جهت توسعه دانش فنی
7- کاهش اثرات حوادث زیان بار طبیعی در صنعت برق
8- سودآور شدن صنعت برق
9- نظارت و کنترل هرچه بیشتر بر شرکتهای تولیدی
10- ایجاد سایت مشترک اینترنتی به منظور استفاده دیگر شرکتها
11- برگزاری همایش کیفیت و بهره بری سالیانه برای شرکت های مربوطه از طرف دولت
فصل سوم:
آموخته ها و نتایج
مقدمه
آشنایی با ساخت پیوند p-n
از آنجا که اساس و پایه علم الکترونیک نیمه هادیها می باشند لذا به عنوان مقدمه به تشریح ساخت پیوند P-n می پردازیم.
برای ساختن پیوند p-n به یک بخش از یک تک بلور نیمه هادی نا خالصی نوع n و به بخش دیگر نا خالصی نوع p می افزایند . پیوند ها بسته به چگونگی ایجاد ناحیه ی انتقال از pبه n دردرون تک بلور طبقه بندی می شوند . هنگامی که ناحیه انتقال بسیار باریک باشد , پیوند ناگهانی نامیده می شود . پیوند تدریجی پیوندی است که ناحیه انتقالش در محدوده ی وسیعتری "پخش " شده باشد.
پیوند p-n ناگهانی به وسیله ی آلیاژ سازی و رشد رونشتی تشکیل می شوند . پیوند های تدریجی از طریق نفوذ گازی ناخالصیها یا کشت یونها ساخته می شوند.
رشد رونشستی :
رشد رونشستی یک لایه ی نیمه هادی روی یک پایه ی تک بلور نیمه هادی روشی برای تشکیل ناگهانی است . رشد رونشستی با گرم کردن پولک میزبان ؛ مثلا سیلیسیم نوع n و عبور دادن جریان کنترل شده ی گازی حاوی تتراکلرید سیلیسیم (( sicl4و هیدروژن از روی سطح انجام می شود . در اثر فعل و انفعال گازها اتمهای سیلیسیم روی سطح پولک میزبان ته نشین می شود . چون معمولا دما بالاتر از 1000درجه سانتی گراد است ؛ اتمهای ته نشین شده انرژی و قابلیت حرکت کافی دارند تا خود را به طور صحیح با شبکه ی بلور میزبان تطبیق دهند . این عمل سبب می شود که شبکه از روی سطح اصلی به طرف بالا امتداد یابد . سرعت نمونه ای رشد لایه ی رونشستی حدود یک میکرون در هر دقیقه است.
برای تشکیل لایه های نوع n یا p می توان در هنگام رشد رونشستی ؛ انتهای ناخالصی را به شکل ترکیب گازی به گاز حامل اضافه کرد . با رشد دادن یک لایه ی نوع pرونشستی (epi) بر روی یک پولک میزبان نوع n پک پیوند تقریبا ناگهانی شکل می گیرد.البته ؛ ترتیبهای دیگر مثل رشد لایه ی نوع n به روش رونشستی روی یک لایه ی نوع p نیز ممکن است.
فرایند رونشستی به طور وسیع در ساخت مدارهای مجتمع (IC)ها به کار می رود. دیود p-n تشکیل شده در فرایند رونشستی (epi) به طور معکوس با یاس می شود تا مدار را از پایه (پولک میزبان جدا سازد . اخیرا از روش رونشستی در شکل دهی ساختارهای SOS مخفف Si-on_sapphire یا Si-on-spinel
سیلیسیم)روی یاقوت سرخ یا یاقوت کبود ) است. یاقوتهای کبود , ترکیبات گوناگونی از اکسید منیزیم (Mgo)
و اکسیدآلومینیم (Al203) هستند و ارتباط نزدیکی با یاقوت سرخ دارند . به طور خلاصه ناخالصی سیلیسیم به طریق رونشستی بر روی پایه های یاقوت سرخ یا کبود رشد داده می شود .
انگیزه استفاده از پایه های یاقوت سرخ یا کبود , کیفیت عایق بودن این پایه ها در جدا سازی مدارها در طراحی IC های حاوی ادوات سریع ,به خصوص مدارهای مجتمع در مقیاس فشرده (LSI) است .
ساختمان کریستالی نیمه هادی
همانطور که هادی ها در صنعت امروزی به خصوص در زمینه های حرارتی و برودتی کاربردی ویژه یافته اند عناصر نیمه هادی نیز اهمیت زیادی در صنعت الکترونیک و ساخت قطعات پیدا کرده اند.
هدف اصلی که در الکترونیک آنالوگ دنبال می شود تقویت سیگنالها بدون تغییر شکل آن سیگنال است. همین هدف بشر را به سمت استفاده از نیمه هادی ها در ساخت قطعات تقویت کننده پیش برده است. اما آن چیزی که عملکرد این قطعات را رقم می زند چگونگی حرکت الکترون ها و حفره ها در ساختار کریستالی این عناصر می باشد.
و این مقدمه ای ست برای پیدایش قطعاتی نظیر ترانزیستور ها -دیود ها و… عامل موثر بر چگونگی حرکت الکترون ها و حفرها چیزی نیست جز درجه حرارت. به طوری که گفته شد درجه حرارت صفر مطلق ساختمان کریستالی نیمه هادی هایی نظیر ژرمانیوم و سیلسکن را تحت تاثیر خود قرار می دهد. یعنی در این درجه حرارت الکترون ها کاملا در باند ظرفیت قرار گرفته و نیمه هادی نظیر یک عایق عمل می کند. (به علت اینکه هیچ الکترون آزادی در باند هدایت خود ندارد).
اگر درجه حرارت افزایش یابد الکترون های لایه ظرفیت انرژی کافی کسب کرده و پیوند کو والانسی خود را شکسته وارد باند هدایت می شوند. به مراتب ای جابه جایی باعث تولید حفره ناشی از الکترون می گردد.
انرژی لازم برای شکستن چنین پیوندی در سیلسکن 1.1(الکترون ولت) و در ژرمانیوم 0.72 (الکترون ولت) می باشد. اهمیت حفره در این است که نظیر الکترون حامل جریان الکتریکی بوده و و نظیر الکترون آزاد عمل می نماید. حال آنکه تا چندی پیش دانشمندان حفره ها را حامل جریان نمی دانستند!
هنگامی که یک پیوند از الکترون خالی شده و حفره ای در آن به وجود می آید در این صورت الکترون های ظرفیت اتمهای مجاور در باند ظرفیت به سادگی قادر به اشغال این حفره هستند. الکترونی که از یک پیوند کووالانسی دیگر این حفره را اشغال می کند خود یک حفره بر جای می گذارد. بنابر این می توان به جای حرکت الکترون های باند ظرفیت تصور نمود که در این باند حفره ها حرکت می نمایند.
حرکت حفره ها بر خلاف حرکت الکترو نها می باشد. حفره جدیدی که به وجود می آید به نوبه خود توسط الکترون دیگری از پیوندی دیگر اشغال شده و بنابراین حفره پله به پله بر خلاف جهت الکترون حرکت می نماید. پس در اینجا با پدیده دیگری از هدایت الکتریکی روبه رو خواهیم بود که مربوط به الکترون های آزاد نمی باشد. در این صورت می توان چنین تصور کرد که حفره در جهت عکس الکترون حرکت نموده است . بنابراین حرکت الکترون در باند ظرفیت را می توان معادل حرکت حفره در خلاف جهت آن دانست.
حال میبینیم که چرا با توجه به اینکه حرکت الکترون همان حرکت حفره است از مفهمم حفره استفاده می شود. با کمی دقت ملاحظه می شود که حرکت حفره حرکت الکترون های باند ظرفیت بوده ولی حرکت الکترون های آزاد در باند هدایت صورت می گیرد و برای بیان این تفاوت بین حرکت الکترون در باند ظرفیت و هدایت از مفهوم حفره کمک می گیریم.
به عنوان مثال فرض می شود که نیمه هادی تحت تاثیر یک میدان خارجی قرار گیرد یعنی به دو سر آن ولتاژی اعمال شود در ایک صورت الکترون های آزاد باند هدایت که تحت تاثیر نیرو های هسته ای اتم ها نیستند در این باند در خلاف جهت میدان اعمال شده حرکت خواهند نمود. انرژی این الکترون ها در جهتی نیست که در باند هدایت قرار گیرد. ولی می توانند در همان باند ظرفیت حرکت کرده و حفره های مجاور خود را اشغال نمایند. بنابر این حرکت این الکترون ها بیشتر از الکترو ن های آزاد به هسته وابسته می باشد. در حقیقت برای هر ولتاژ اعمال شده به دو سر یک نیمه هادی یک الکترون در باند ظرفیت فاصله متوسط کو تاهتری از الکترون های باند هدایت را در فاصله زمانی یکسان طی خواهند نمود.
بنابر این می توان گفت که الکترون های آزاد دارای تحرک بیشتری نسبت به حفره ها هستند. به طوری که گفته شد در درجه حرارت معمولی اتاق تعدادی از پیوند های کو والانسی شکسته سده به ازای شکسته شدن هر پیوند یک الکترون-حفره تولید می شود. الکترون و حفره هر دو حامل های بادار می باشد. با اعمال یک پتانسیل الکتریکی به دو سرهر قطعه ای نیمه هادی این حامل هر دو حرکت نمود ه و جریان به وجود می آورند.
دیدید که این حرکت ها در چگونکی رفتار یک نیمه هادی تا چه میزان می توانند موثر باشند.با پیشرفت علم و تکنولوژی استخراج کشف هر نیمه هادی جدیدی انقلابی عظیم در عصر ارتباطات حاصل می شود.
ترانزیستورها
ترانزیستور به عنوان یکی از قطعات الکترونیک است که از مواد نیمه رسانایی مانند( سیلیسیم سیلیکان( ساخته می شود.
کاربرد
ترانزیستور هم در مدارات الکترونیک آنالوگ و هم در مدارات الکترونیک دیجیتال کاربردهای بسیار وسیعی دارد. در آنالوگ می توان از آن به عنوان تقویت کننده یا تنظیم کننده ولتاژ (رگولاتور) و … استفاده کرد. کاربرد ترانزیستور در الکترونیک دیجیتال شامل مواردی مانند پیاده سازی مدار منطقی، حافظه، سوئیچ کردن و … می شود.به جرات می توان گفت که ترانزیستور قلب تپنده الکترونیک است.
عملکرد
ترانزیستور از دیدگاه مداری یک عنصر سه پایه می باشد که با اعمال یک سیگنال به یکی از پایه های آن میزان جریان عبور کننده از دو پایه دیگر آن را می توان تنظیم کرد. برای عملکرد صحیح ترانزیستور در مدار باید توسط المان های دیگر مانند مقاومت ها و … جریان ها و ولتاژهای لازم را برای آن فراهم کرد و یا اصطلاحاً آن را بایاس کرد.
انواع
دو دسته مهم از ترانزیستورها BJTترانزیستور دوقطبی پیوندی (Bypolar Junction Transistors) و FET ترانزیستور اثر میدان (Field Effect Transistors) هستند. ترانزیستورهای اثزمیدان یا FET ها نیز خود به دو دسته ی ترانزیستور اثر میدان پیوندی(JFET) و MOSFET ها Metal Oxide SemiConductor Field Effect Transistor) )تقسیم می شوند.
ترانزیستور دوقطبی پیوندی
در ترانزیستور دو قطبی پیوندی با اعمال یک جریان به پایه بیس جریان عبوری از دو پایه کلکتور و امیتر کنترل می شود. ترانزیستورهای دوقطبی پیوندی در دونوع npn و pnp ساخته می شوند. بسته به حالت بایاس این ترانزیستورها ممکن است در ناحیه قطع، فعال و یا اشباع کار کنند. سرعت بالای این ترانزیستورها و بعضی قابلیت های دیگر باعث شده که هنوز هم از آنها در بعضی مدارات خاص استفاده شود.
ترانزیستور اثر میدان پیوندی(JFET)
در ترانزیستورهای JFET(Junction Field Effect Transistors( در اثر میدان، با اعمال یک ولتاژ به پایه گیت میزان جریان عبوری از دو پایه سورس و درین کنترل می شود. ترانزیستور اثر میدانی بر دو قسم است: نوع n یا N-Type و نوع p یا P-Type. از دیدگاهی دیگر این ترانزیستورها در دو نوع افزایشی و تخلیه ای ساخته می شوند.نواحی کار این ترانزستورها شامل "فعال" و "اشباع" و "ترایود" است این ترانزیستورها تقریباً هیچ استفاده ای ندارند چون جریان دهی آنها محدود است و به سختی مجتمع می شوند.
انواع ترانزیستور پیوندی
pnp
شامل سه لایه نیم هادی که دو لایه کناری از نوع p و لایه میانی از نوع n است و مزیت اصلی آن در تشریح عملکرد ترانزیستور این است که جهت جاری شدن حفره ها با جهت جریان یکی است.
npn
شامل سه لایه نیم هادی که دو لایه کناری از نوع n و لایه میانی از نوع p است. پس از درک ایده های اساسی برای قطعه ی pnp می توان به سادگی آنها را به ترانزیستور پرکاربردتر npn مربوط ساخت.
ساختمان ترانزیستور پیوندی ترانزیستور دارای دو پیوندگاه است. یکی بین امیتر و بیس و دیگری بین بیس و کلکتور. به همین دلیل ترانزیستور شبیه دو دیود است. دیود سمت چپ را دیود بیس _ امیتر یا صرفاً دیود امیتر و دیود سمت راست را دیود کلکتور _ بیس یا دیود کلکتور می نامیم. میزان ناخالصی ناحیه وسط به مراتب کمتر از دو ناحیه جانبی است. این کاهش ناخالصی باعث کم شدن هدایت و بالعکس باعث زیاد شدن مقاومت این ناحیه می گردد.
امیتر که به شدت آلائیده شده، نقش گسیل و یا تزریق الکترون به درون بیس را به عهده دارد. بیس بسیار نازک ساخته شده و آلایش آن ضعیف است و لذا بیشتر الکترونهای تزریق شده از امیتر را به کلکتور عبور می دهد. میزان آلایش کلکتور کمتر از میزان آلایش شدید امیتر و بیشتر از آلایش ضعیف بیس است و کلکتور الکترونها را از بیس جمع آوری می کند.
طرز کار ترانزیستور پیوندی طرز کار ترانزیستور را با استفاده از نوع npn مورد بررسی قرار می دهیم. طرز کار pnp هم دقیقا مشابه npn خواهد بود، به شرط اینکه الکترونها و حفره ها با یکدیگر عوض شوند. در نوع npn به علت تغذیه مستقیم دیود امیتر ناحیه تهی کم عرض می شود، در نتیجه حاملهای اکثریت یعنی الکترونها از ماده n به ماده p هجوم می آورند. حال اگر دیود بیس _ کلکتور را به حالت معکوس تغذیه نمائیم، دیود کلکتور به علت بایاس معکوس عریض تر می شود.
الکترونهای جاری شده به ناحیه p در دو جهت جاری می شوند، بخشی از آنها از پیوندگاه کلکتور عبور کرده، به ناحیه کلکتور می رسند و تعدادی از آنها با حفره های بیس بازترکیب شده و به عنوان الکترونهای ظرفیت به سوی پایه خارجی بیس روانه می شوند، این مولفه بسیار کوچک است.
شیوه ی اتصال ترازیستورها
اتصال بیس مشترک در این اتصال پایه بیس بین هر دو بخش ورودی و خروجی مدار مشترک است. جهتهای انتخابی برای جریان شاخه ها جهت قراردادی جریان در همان جهت حفره ها می شود.
اتصال امیتر مشترک مدار امیتر مشترک بیشتر از سایر روشها در مدارهای الکترونیکی کاربرد دارد و مداری است که در آن امیتر بین بیس و کلکتور مشترک است. این مدار دارای امپدانس ورودی کم بوده، ولی امپدانس خروجی مدار بالا می باشد.
اتصال کلکتور مشترک اتصال کلکتور مشترک برای تطبیق امپدانس در مدار بکار می رود، زیرا برعکس حالت قبلی دارای امپدانس ورودی زیاد و امپدانس خروجی پائین است. اتصال کلکتور مشترک غالبا به همراه مقاومتی بین امیتر و زمین به نام مقاومت بار بسته می شود.
ترانزیستور اثر میدان MOS
این ترانزیستورها نیز مانند Jfet ها عمل می کنند با این تفاوت که جریان ورودی گیت آنها صفر است. همچنین رابطه جریان با ولتاژ نیز متفاوت است. این ترانزیستورها دارای دو نوع PMOS و NMOS هستند که فناوری استفاده از دو نوع آن در یک مدار تکنولوژی CMOS نام دارد. این ترانزیستورها امروزه بسیار کاربرد دارند زیرا براحتی مجتمع می شوند و فضای کمتری اشغال می کنند. همچنین مصرف توان بسیار ناچیزی دارند.
به تکنولوژی هایی که از دو نوع ترانزیستورهای دوقطبی و Mosfet در آن واحد استفاده می کنند Bicmos می گویند.
البته نقطه کار این ترانزیستورها نسبت به دما حساس است وتغییر می کند. بنابراین بیشتر در سوئیچینگ بکار می روند.
ساختار و طرز کار ترانزیستور اثر میدانی – فت
ترانزیستور اثر میدانی- فت FET همانگونه که از نام این المام مشخص است، پایه کنترلی آن جریانی مصرف نمی کند و تنها با اعامل ولتاژ و ایجاد میدان درون نیمه هادی ، جریان عبوری از FET کنترل می شود. به همین دلیل ورودی این مدار هیچ کونه اثر بارگذاری بر روی طبقات تقویت قبلی نمی گذارد و امپدانس بسیار بالایی دارد.
فت دارای سه پایه با نهامهای درِین D – سورس S و گیت G است که پایه گیت ، جریان عبوری از درین به سورس را کنترل می نماید. فت ها دارای دو نوع N کانال و P کانال هستند. در فت نوع N کانال زمانی که گیت نسبت به سورس مثبت باشد جریان از درین به سورس عبور می کند . FET ها معمولاً بسیار حساس بوده و حتی با الکتریسیته ساکن بدن نیز تحریک می گردند. به همین دلیل نسبت به نویز بسیار حساس هستند.
نوع دیگر ترانزیستورهای اثر میدانی MOSFET ها هستند ترانزیستور اثر میدانی اکسید فلزی نیمه هادی – Metal-Oxide Semiconductor Field Efect Transistor ) )یکی از اساسی ترین مزیت های ماسفت ها نویز کمتر آنها در مدار است.
فت ها در ساخت فرستنده باند اف ام رادیو نیز کاربرد فراوانی دارند. برای تست کردن فت کانال N با مالتی متر ، نخست پایه گیت را پیدا می کنیم. یعنی پایه ای که نسبت به دو پایه دیگر در یک جهت مقداری رسانایی دارد و در جهت دیگر مقاومت آن بی نهایت است. معمولاً مقاومت بین پایه درین و گیت از مقاومت پایه درین و سورس بیشتر است که از این طریق می توان پایه درین را از سورس تشخیص داد
شکل و پایه های ترانزیستورها
در ادامه توضیحات مربوط به ترانزیستورها ، در این مبحث با شکل ترانزیستورهای متداول و نام پایه های آن آشنا خواهید شد. در صورتی که بخواهید مداری را از روی نقشه شماتیک آن بسازید به این اطلاعات نیاز پیدا می کنید.
شکل و پایه های آن
نام ترانزیستور
نام ترانزیستور
25C933
2SC735
2SC1682
2SC784
2SC785
2SC380
2SA562
2SA561
2SA495
2SA842
2SC372
2SC381
25A564
2SC1318
2SC828
2SC829
2SC945
2SC1906
2SC2310
2SC 930
2SC1383
2SC1384
2SA683
2SA684
ساختار و طرز کار ترانزیستور اثر میدانی – فت
ترانزیستور اثر میدانی ( فت ) – FET
همانگونه که از نام این المام مشخص است، پایه کنترلی آن جریانی مصرف نمی کند و تنها با اعامل ولتاژ و ایجاد میدان درون نیمه هادی ، جریان عبوری از FET کنترل می شود. به همین دلیل ورودی این مدار هیچ کونه اثر بارگذاری بر روی طبقات تقویت قبلی نمی گذارد و امپدانس بسیار بالایی دارد.
فت دارای سه پایه با نهامهای درِین D – سورس S و گیت G است که پایه گیت ، جریان عبوری از درین به سورس را کنترل می نماید. فت ها دارای دو نوع N کانال و P کانال هستند. در فت نوع N کانال زمانی که گیت نسبت به سورس مثبت باشد جریان از درین به سورس عبور می کند . FET ها معمولاً بسیار حساس بوده و حتی با الکتریسیته ساکن بدن نیز تحریک می گردند. به همین دلیل نسبت به نویز بسیار حساس هستند.نوع دیگر ترانزیستورهای اثر میدانی MOSFET ها هستند ( ترانزیستور اثر میدانی اکسید فلزی نیمه هادی – Metal-Oxide Semiconductor Field Efect Transistor ) یکی از اساسی ترین مزیت های ماسفت ها نویز کمتر آنها در مدار است.فت ها در ساخت فرستنده باند اف ام رادیو نیز کاربرد فراوانی دارند. برای تست کردن فت کانال N با مالتی متر ، نخست پایه گیت را پیدا می کنیم. یعنی پایه ای که نسبت به دو پایه دیگر در یک جهت مقداری رسانایی دارد و در جهت دیگر مقاومت آن بی نهایت است. معمولاً مقاومت بین پایه درین و گیت از مقاومت پایه درین و سورس بیشتر است که از این طریق می توان پایه درین را از سورس تشخیص داد.
نماد و شماتیک پیوندها در ترانزیستورها
در مطالب قبل بطور خلاصه راجع به دیودها و ترانزیستورها و پیوندهای PN صحبت کرده مثالهایی از کاربرد اصلی انواع دیود ارائه کردیم. در این قسمت راجع به گونه های ساده اولین ترانزیستورها که از سه لایه نیمه هادی تشکیل شده اند صحبت خواهیم کرد.بصورت استاندارد دو نوع ترانزیستور بصورت PNP و NPN داریم. انتخاب نامه آنها به نحوه کنار هم قرار گرفتن لایه های نیمه هادی و پلاریته آنها بستگی دارد. هر چند در اوایل ساخت این وسیله الکترونیکی و جایگزینی آن با لامپهای خلاء، ترانزستورها اغلب از جنس ژرمانیم و بصورت PNP ساخته می شدند اما محدودیت های ساخت و فن آوری از یکطرف و تفاوت بهره دریافتی از طرف دیگر، سازندگان را مجبور کرد که بعدها بیشتر از نیمه هادیی از جنس سیلیکون و با پلاریته NPN برای ساخت ترانزیستور استفاده کنند. تفاوت خاصی در عملکرد این دو نمونه وجود ندارد و این بدان معنی نیست که ترانزیستور ژرمانیم با پلاریته NPN یا سیلیکون با پلاریته PNP وجود ندارد.
نمای واقعی تری از پیوندها در یک ترانزیستور که تفاوت کلکتور و امیتر را بوضوح نشان می دهد.
برای هریک از لایه های نیمه هادی که در یک ترانزیستور وجود دارد یک پایه در نظر گرفته شده است که ارتباط مدار بیرونی را به نیمه هادی ها میسر می سازد. این پایه ها به نامهای Base (پایه) ، Collector (جمع کننده) و Emitter (منتشر کننده) مشخص می شوند. اگر به ساختار لایه ای یک ترانزیستور دقت کنیم بنظر تفاوت خاصی میان Collector و Emitter دیده نمی شود اما واقعیت اینگونه نیست. چرا که ضخامت و بزرگی لایه Collector به مراتب از Emitter بزرگتر است و این عملا" باعث می شود که این دو لایه با وجود تشابه پلاریته ای که دارند با یکدیگر تفاوت داشته باشند. با وجود این معمولا" در شکل ها برای سهولت این دو لایه را بصورت یکسان در نظر میگیردند.
بدون آنکه در این مطلب قصد بررسی دقیق نحوه کار یک ترانزیستور را داشته باشیم، قصد داریم ساده ترین مداری که می توان با یک ترانزیستور تهیه کرد را به شما معرفی کرده و کاربرد آنرا برای شما شرح دهیم. به شکل زیر نگاه کنید.
مدار ساده برای آشنایی با طرز کار یک ترانزیستور
بطور جداگانه بین E و C و همچنین بین E و B منابع تغذیه ای قرار داده ایم. مقاومت ها یی که در مسیر هریک از این منابع ولتاژ قرار دادیم صرفا" برای محدود کردن جریان بوده و نه چیز دیگر. چرا که در صورت نبود آنها، پیوندها بر اثر کشیده شدن جریان زیاد خواهند سوخت.طرز کار ترانزیستور به اینصورت است، چنانچه پیوند BE را بصورت مستقیم بایاس (Bias به معنی اعمال ولتاژ و تحریک است) کنیم بطوری که این پیوند PN روشن شود (برای اینکار کافی است که به این پیوند حدود 0.6 تا 0.7 ولت با توجه به نوع ترانزیستور ولتاژ اعمال شود)، در آنصورت از مدار بسته شده میان E و C می توان جریان بسیار بالایی کشید. اگر به شکل دوم دقت کنید بوضوح خواهید فهمید که این عمل چگونه امکان پذیر است. در حالت عادی میان E و C هیچ مدار بازی وجود ندارد اما به محض آنکه شما پیوند BE را با پلاریته موافق بایاس کنید، با توجه به آنچه قبلا" راجع به یک پیوند PN توضیح دادیم، این پیوند تقریبا" بصورت اتصال کوتاه عمل می کند و شما عملا" خواهید توانست از پایه های E و C جریان قابل ملاحظه ای بکشید. (در واقع در اینحالت می توان فرض کرد که در شکل دوم عملا" لایه PN مربوط به BE از بین می رود و بین EC یک اتصال کوتاه رخ می دهد.)بنابراین مشاهده می کنید که با برقراری یک جریان کوچک Ib شما می توانید یک جریان بزرگ Ic را داشته باشید. این مدار اساس سوئیچ های الکترونیک در مدارهای الکترونیکی است. بعنوان مثال شما می توانید در مدار کلکتور یک رله قرار دهید که با جریان مثلا" چند آمپری کار می کند و در عوض با اعمال یک جریان بسیار ضعیف در حد میلی آمپر – حتی کمتر – در مدار بیس که ممکن است از طریق یک مدار دیجیتال تهیه شود، به رله فرمان روشن یا خاموش شدن بدهید.
BC178
BC179
2N1711
2N1613
2N2907
2N2219
2N2222
BC140
BC141
BC160
BC161
BC107
BC108
BC109
BC177
BC250
2BC251
BC252
BC253
BC307
BC308
BC309
BC327
BC328
BC337
BC338
BC451
BC452
BC453
BC454
BC556
BC557
BC558
BC559
BC170
BC171
BC172
BC173
BC174
BC181
BC182
BC183
BC184
BC212
BC213
BC214
BC237
BC238
BC239
BC546
BC547
BC548
BC549
2SB415
2SB33
2SA12
2SA15
2SA31
2SA52
2SA203
2SA202
2SA102
2SA101
2SA53
2SB54
2SB175
2SB186
2SB75
2SB56
2SB77
2SB370
2SB405
2SB187
2SB178
2SB324
AD149
AD162
2SB449
2SD203
2N3054
2N3055
2SC1030
AD161
2SD288
2SD330
2SD226
2SD234
2SD313
2SD342
2SC1381
2SC1382
2SC1060
2SC1419
BD241
BD240
2SA755
2SA670
2SD235
2SB435
2SC1368
2SC1212
2SC1162
2SC1163
BD140
BD135
IE3055
2SA715
2SA699
2SC1096
2SC1226
آی سی های سری 7400
این آیسی ها در نوع TTL ,CMOS در بازار موجود هستند.
نوع TTL و CMOS این آیسی ها دارای رتبه بندی های مختلفی است.
نوع TTL
نوع TTL آن شامل L،LS،S،AS،ALS و F می باشد.به طور مثال آیسی مربوط به گیت منطقی AND را در نظر بگیرید.
این آیسی را شاید بتوانید در بازار با نام های 74L08،74LS08،74S08،74AS08، 74ALS08 و 74F08بیابید. اگر به یکی از این آیسی ها با دقت کنید.بعد از عبارت 74 شاهد یکی از عبارت های L،LS،S،AS،ALS و F و بعد از آن شماره آیسی را می بینید.
همانطور که می بینید برای گیت AND بعد از این عبارات 08 را مشاهده می کنید که بیانگر گیت AND است.این مطلب راجع به بقیه گیتها و آیسی ها نیز صادق است.
تغذیه گروه TTL
خانواده L ،LS ،AS ،ALS و F دارای تغذیه مثبت بین 4.5 تا 5.5 ولت است.در واقع این رنج از و لتاژ،ولتاژ قابل تحمل این آیسی است.واین آیسی در این رنج درست کار خواهد کرد.
خانواده S دارای تغذیه مثبت بین 4.75 تا 5.25 است.
میزان ولتاژ خروجی در حالت 1 و 0
میزان ولتاژ خروجی در حالت صفریا LOW برای تمامی این گروه TTL برابر 0.3 ولت می باشد.
مقدار ولتاژ خروجی در حالت یک یا HIGH برای خانواده گروه L،LS و S برابر 3.4 ولت می باشد.
مقدار ولتاژ خروجی در حالت یک یا HIGH خانواده گروه AS و ALS از تفریق تغذیه مثبت آیسی از عدد 2 بدست می آید.
مقدار ولتاژ خروجی در حالت یک یا HIGH برای خانواده گروه F نیز برابر 3.5 است.
جریان خروجی خانواده گروه TTL
مقدار جریان خروجی خانواده TTL به شرح زیر می باشد.
مقدار جریان خروجی برای خانواده گروه L برابر5mA (منظور از mA میلی آمپر است)
مقدار جریان خروجی برای خانواده گروه LS برابر 8mA
مقدار جریان خروجی برای خانواده گروه S برابر 40mA
مقدار جریان خروجی برای خانواده گروه AS برابر 20mA
مقدار جریان خروجی برای خانواده گروه ALS برابر 8mA
مقدار جریان خروجی برای خانواده گروه F نیز برابر 20mA
نوع CMOS
این آیسی نیز دارای خانواده C،AC،HC و HCT می باشد.
به طور مثال اگر یک آیسی AND خریداری کنید.،و نوع آن CMOS باشد.ممکن است.،بعد از عدد 74 هر یک از عبارت های بالا را ببینید.به طور مثال آیسی AND را می توانید به صورت زیر مشاهده کنید.
74HC08 ،74HCT08 ، 74C08 و 74AC08 را بر روی آیسی ببینید.
میزان ولتاژ خروجی در حالت 1 و 0
در تمامی این خانواده ولتاژ خروجی در حالت LOW یا صفر برابر 0.1 ولتاژ مثبت است.
ولتاژ خروجی در حالت یک یا HIGH در خانواده گروه C از حاصلضرب 0.9 در مقدار مثبت منبع تغذیه بدست می آید.
ولتاژ خروجی در حالت یک یا HIGH در بقیه خانواده این گروه از تفریق مثبت تغذیه از مقدار عددی 0.1 بدست می آید.
جریان خروجی خانواده گروه CMOS
مقدار جریان خروجی آیسی های نوع CMOS
مقدار جریان خروجی برای خانواده گروه C برابر 3.3mA (منظور از mA میلی آمپر است)
مقدار جریان خروجی برای خانواده گروه AC برابر 50mA
مقدار جریان خروجی برای خانواده گروه HC,HCT برابر 25mA
تغذیه آیسی های گروه CMOS
خانواده گروه C در رنج ولتاژ بین 3تغذیه 3 تا 15 ولت کار می کنند.
خانواده گروه AC ،HC و HCT بین تغذیه 2 تا 6 ولت کار می کنند.
خازن
خازن ها انرژی الکتریکی را نگهداری می کنند و به همراه مقاومت ها ، در مدارات تایمینگ استفاده می شوند . همچنین از خازن ها برای صاف کردن سطح تغییرات ولتاژ مستقیم استفاده می شود . از خازن ها در مدارات بعنوان فیلتر هم استفاده می شود . زیرا خازن ها به راحتی سیگنالهای غیر مستقیم AC را عبور می دهند ولی مانع عبور سیگنالهای مستقیم DC می شوند .
ظرفیت :
ظرفیت معیاری برای اندازه گیری توانائی نگهداری انرژی الکتریکی است . ظرفیت زیاد بدین معنی است که خازن قادر به نگهداری انرژی الکتریکی بیشتری است . واحد اندازه گیری ظرفیت فاراد است . 1 فاراد واحد بزرگی است و مشخص کننده ظرفیت بالا می باشد . بنابراین استفاده از واحدهای کوچکتر نیز در خازنها مرسوم است . میکروفاراد µF ، نانوفاراد nF و پیکوفاراد pF واحدهای کوچکتر فاراد هستند .
µ means 10-6 (millionth), so 1000000µF = 1F
n means 10-9 (thousand-millionth), so 1000nF = 1µF
p means 10-12 (million-millionth), so 1000pF = 1nF
انواع مختلفی از خازن ها وجود دارند که میتوان از دو نوع اصلی آنها ، با پلاریته ( قطب دار ) و بدون پلاریته ( بدون قطب ) نام برد .
خازنهای قطب دار :
الف – خازن های الکترولیت
در خازنهای الکترولیت قطب مثبت و منفی بر روی بدنه آنها مشخص شده و بر اساس قطب ها در مدارات مورد استفاده قرار می گیرند . دو نوع طراحی برای شکل این خازن ها وجود دارد . یکی شکل اَکسیل که در این نوع پایه های یکی در طرف راست و دیگری در طرف چپ قرار دارد و دیگری رادیال که در این نوع هر دو پایه خازن در یک طرف آن قرار دارد . در شکل نمونه ای از خازن اکسیل و رادیال نشان داده شده است .
در خازن های الکترولیت ظرفیت آنها بصورت یک عدد بر روی بدنه شان نوشته شده است . همچنین ولتاژ تحمل خازن ها نیز بر روی بدنه آنها نوشته شده و هنگام انتخاب یک خازن باید این ولتاژ مد نظر قرار گیرد . این خازن ها آسیبی نمی بینند مگر اینکه با هویه داغ شوند .
ب – خازن های تانتالیوم
خازن های تانتالیم هم از نوع قطب دار هستند و مانند خازنهای الکترولیت معمولاً ولتاژ کمی دارند . این خازن ها معمولاً در سایز های کوچک و البته گران تهیه می شوند و بنابراین یک ظرفیت بالا را در سایزی کوچک را ارائه می دهند .
در خازنهای تانتالیوم جدید ، ولتاژ و ظرفیت بر روی بدنه آنها نوشته شده ولی در انواع قدیمی از یک نوار رنگی استفاده می شود که مثلا دو خط دارد ( برای دو رقم ) و یک نقطه رنگی برای تعداد صفرها وجود دارد که ظرفیت بر حست میکروفاراد را مشخص می کنند . برای دو رقم اول کدهای استاندارد رنگی استفاده می شود ولی برای تعداد صفرها و محل رنگی ، رنگ خاکستری به معنی × 0.01 و رنگ سفید به معنی × 0.1 است . نوار رنگی سوم نزدیک به انتها ، ولتاژ را مشخص می کند بطوری که اگر این خط زرد باشد 3/6 ولت ، مشکی 10 ولت ، سبز 16 ولت ، آبی 20 ولت ، خاکستری 25 ولت و سفید 30 ولت را نشان می دهد .
برای مثال رنگهای آبی – خاکستری و نقطه سیاه به معنی 68 میکروفاراد است .
آبی – خاکستری و نقطه سفید به معنی 8/6 میکروفاراد است .
خازنهای بدون قطب :
خازن های بدون قطب معمولا خازنهای با ظرفیت کم هستند و میتوان آنها را از هر طرف در مدارات مورد استفاده قرار داد . این خازنها در برابر گرما تحمل بیشتری دارند و در ولتاژهای بالاتر مثلا 50 ولت ، 250 ولت و … عرضه می شوند .
پیدا کردن ظرفیت این خازنها کمی مشکل است چون انواع زیادی از این نوع خازنها وجود دارد و سیستم های کد گذاری مختلفی برای آنها وجود دارد . در بسیاری از خازن ها با ظرفیت کم ، ظرفیت بر روی خازن نوشته شده ولی هیچ واحد یا مضربی برای آن چاپ نشده و برای دانستن واحد باید به دانش خودتان رجوع کنید . برای مثال بر 1/0 به معنی 0.1µF یا 100 نانوفاراد است . گاهی اوقات بر روی این خازنها چنین نوشته می شود ( 4n7 ) به معنی 7/4 نانوفاراد . در خازن های کوچک چنانچه نوشتن بر روی آنها مشکل باشد از شماره های کد دار بر روی خازن ها استفاده می شود . در این موارد عدد اول و دوم را نوشته و سپس به تعداد عدد سوم در مقابل آن صفر قرار دهید تا ظرفیت بر حسب پیکوفاراد بدست اید . بطور مثال اگر بر روی خازنی عدد 102 چاپ شده باشد ، ظرفیت برابر خواهد بود با 1000 پیکوفاراد یا 1 نانوفاراد .
کد رنگی خازن ها :
در خازن های پلیستر برای سالهای زیادی از کدهای رنگی بر روی بدنه آنها استفاده می شد . در این کد ها سه رنگ اول ظرفیت را نشان می دهند و رنگ چهارم تولرانس ا نشان می دهد .
برای مثال قهوه ای – مشکی – نارنجی به معنی 10000 پیکوفاراد یا 10 نانوفاراد است .
خازن های پلیستر امروزه به وفور در مدارات الکترونیک مورد استفاده قرار می گیرند . این خازنها در برابر حرارت زیاد معیوب می شوند و بنابراین هنگام لحیمکاری باید به این نکته توجه داشت
کد رنگی خازنها
رنگ
شماره
سیاه
0
قهوه ای
1
قرمز
2
نارنجی
3
زرد
4
سبز
5
آبی
6
بنفش
7
خاکستری
8
سفید
9
خازن ها با هر ظرفیتی وجود ندارند . بطور مثال خازن های 22 میکروفاراد یا 47 میکروفاراد وجود دارند ولی خازن های 25 میکروفاراد یا 117 میکروفاراد وجود ندارند .
دلیل اینکار چنین است :
فرض کنیم بخواهیم خازن ها را با اختلاف ظرفیت ده تا ده تا بسازیم . مثلاً 10 و 20 و 30 و . . . به همین ترتیب . در ابتدا خوب بنظر می رسد ولی وقتی که به ظرفیت مثلاً 1000 برسیم چه رخ می دهد ؟
مثلاً 1000 و 1010 و 1020 و . . . که در اینصورت اختلاف بین خازن 1000 میکروفاراد با 1010 میکروفاراد بسیار کم است و فرقی با هم ندارند پس این مسئله معقول بنظر نمی رسد .
برای ساختن یک رنج محسوس از ارزش خازن ها ، میتوان برای اندازه ظرفیت از مضارب استاندارد 10 استفاده نمود . مثلاً 7/4 – 47 – 470 و . . . و یا 2/2 – 220 – 2200 و . . .
خازن های متغیر :
در مدارات تیونینگ رادیوئی از این خازن ها استفاده می شود و به همین دلیل به این خازنها گاهی خازن تیونینگ هم اطلاق می شود . ظرفیت این خازن ها خیلی کم و در حدود 100 تا 500 پیکوفاراد است و بدلیل ظرفیت پائین در مدارات تایمینگ مورد استفاده قرار نمی گیرند .
در مدارات تایمینگ از خازن های ثابت استفاده می شود و اگر نیاز باشد دوره تناوب را تغییر دهیم ، این عمل بکمک مقاومت انجام می شود .
خازن های تریمر :
خازن های تریمر خازن های متغییر کوچک و با ظرفیت بسیار پائین هستند . ظرفیت این خازن ها از حدود 1 تا 100 پیکوفاراد ماست و بیشتر در تیونرهای مدارات با فرکانس بالا مورد استفاده قرار می گیرند .
ادوات ورودی ( سنسورها ، ترانسدیوسرها و ترانسمیترها)
سنسورها ، ترانسمیترها و ترانسمیترها اجزای یک پروسه صنعتی هستند که کاربردهای فراوانی در پروسه های متنوع دارند.
کاربرد عمده این قطعات در ارزیابی عملکرد سیستم و ارائه یک فیدبک با مقدار و وضعیت مناسب است که بدین ترتیب کنترلر سیستم متوجه وضعیت کارکرد آن و جگونگی حالت خروجی خواهد شد .
یک سنسور بنا به تعریف ، قطعه ای است که به پارامترهای فیزیکی نظیر حرکت ، حرارت ، نور ، فشار، الکتریسیته ، مغناطیس و دیگر حالات انرژی حساس است و در هنگام تحریک آنها از خود عکس العمل نشان می دهد .
یک ترانسدیوسر بنا به تعریف ، قطعه ای است که وظیفه تبدیل حالات انرژی به یکدیگر را برعهده دارد، بدین معنی که اگر یک سنسور فشار همراه یک ترانسدیوسر باشد ، سنسور فشار پارمتر را اندازه می گیرد و مقدار تعیین شده را به ترانسدیوسر تحویل می دهد ، سپس ترانسدیوسر آن را به یک سیگنال الکتریکی قابل درک برای کنترلر و صد البته قابل ارسال توسط سیم های فلزی ، تبدیل می کند .بنابراین همواره خروجی یک ترانسدیوسر ، سیگنال الکتریکی است که در سمت دیگر خط می تواند مشخصه ها و پارامترهای الکتریکی نظیر ولتاژ ، جریان و فرکانس را تغییر دهد ، البته به این نکته باید توجه داشت که سنسور انتخاب شده باید از نوع شنشورهای مبدل پارامترهای فیزیکی به الکتریکی باشد و بتواند مثلا دمای اندازه گیری شده را به یک سیگنال بسیار ضعیف تبدیل کند که در مرحله بعدی وارد ترانسدیوسر شده و سپس به مدارهای الکترونیکی تحویل داده خواهد شد .
برای درک این مطلب به تفاوتهای میان دو سنسور انداره گیر دما می پردازیم : ترموکوپل و درجه حرارت جیوه ای ، دو نوع سنسور دما هستند که هر دو یک عمل را انجام می دهند ، اما ترموکوپل در شمت خروجی سیگنال الکتریکی ارائه می دهد ، در حالی که درجه حرارت جیوه ای خروجی خود را به شکل تغییرات ارتفاع در جیوه داخلش نشان می دهد .
ترانسمیتر وسیله ای است که یک سیگنال الکتریکی ضعیف را دریافت کرده و به سطوح قابل قبول برای کنترلرها و مدارهای الکترونیکی تبدیل می کند ، مثلا یک حلقه فیدبک سیگنالی در سطح ماکروولت یا میلی ولت یا میلی آمپرتولید می کند و این سیگنال ضعیف می تواند با عبور از ترانسمیتر به سیگنالی در سطوح صفر تا ده ولت و یا 4 تا 20 میلی آمپر تبدیل شود. ترانسمیترها عموما از قطعاتی مثلop-amp برای تقویت و خطی کردن این سطوح ضعیف سیگنال استفاده می کند .
سنسورها و ملحقات آنها مثل ترانسدیوسرها را در گروه های بزرگی تحت عنوان ابزار دقیق قرار داده و آنها را بر اساس نوع انرژی قابل استفاده و روشهای تبدیل ، دسته بندی می کنند .
انواع حسگرها
زوج حسگر مافوق صوت
حسگر یک وسیله الکتریکی است که تغییرات فیزیکی یا شیمیایی را اندازه گیری می کند و آن را به سیگنال الکتریکی تبدیل می نماید. حسگرها در واقع ابزار ارتباط ربات با دنیای خارج و کسب اطلاعات محیطی و نیز داخلی می باشند. انتخاب درست حسگرها تاثیر بسیار زیادی در میزان کارایی ربات دارد. بسته به نوع اطلاعاتی که ربات نیاز دارد از حسگرهای مختلفی می توان استفاده نمود:
– فاصله
– رنگ
– نور
– صدا
– حرکت و لرزش
– دما
– دود
– و…
اما چرا از حسگرها استفاده می کنیم ؟ همانطور که در ابتدای این گفتار اشاره شد حسگرها اطلاعات مورد نیاز ربات را در اختیار آن قرار می دهند و کمیتهای فیزیکی یا شیمیایی موردنظر را به سیگنالهای الکتریکی تبدیل می کنند.مزایای سیگنالهای الکتریکی را می توان بصورت زیر دسته بندی کرد:
-پردازش راحتتر و ارزانتر
– انتقال آسان
– دقت بالا
– سرعت بالا
– و…
حسگرهای مورد استفاده در رباتیک:
در یک دسته بندی کلی حسگرهای مورد استفاده در رباتها را می توان در یک دسته خلاصه کرد:
– حسگرهای تماسی ( Contact )
مهمترین کاربردهای این حسگرها به این شرح می باشد:
– آشکارسازی تماس دو جسم
– اندازه گیری نیروها و گشتاورهایی که حین حرکت ربات بین اجزای مختلف آن ایجاد می شود.
در شکل یک میکرو سوئیچ یا حسگر تماسی نشان داده شده است. در صورت برخورد تیغه فلزی به مانع و فشرده شدن کلید زیر تیغه همانند قطع و وصل شدن یک کلید ولتاŽ خروجی سوئیچ تغییر می کند.
– حسگرهای هم جواری (Proximity )
آشکارسازی اشیا نزدیک به روبات مهمترین کاربرد این حسگرها می باشد.
انواع مختلفی از حسگرهای هم جواری در بازار موجود است از جمله می توان به موارد زیر اشاره نمود:
– القایی
– اثرهال
– خازنی
– اولتراسونیک
– نوری
– حسگرهای دوربرد ( Far away)
کاربرد اصلی این حسگرها به شرح زیر می باشد:
– فاصله سنج (لیزو و اولتراسونیک)
– بینایی (دوربینCCD)
در شکل یک زوج گیرنده و فرستنده اولتراسونیک (ماورا صوت) نشان داده شده است. اساس کار
این حسگرها بر مبنای پدیده داپلر می باشد.
– حسگر نوری (گیرنده-فرستنده)
یکی از پرکاربردترین حسگرهای مورد استفاده در ساخت رباتها حسگرهای نوری هستند. حسگر نوری گیرنده- فرستنده از یک دیود نورانی (فرستنده) و یک ترانزیستور نوری (گیرنده) تشکیل شده است.
خروجی این حسگر در صورتیکه مقابل سطح سفید قرار بگیرد 5 ولت و در صورتی که در مقابل یک سطح تیره قرار گیرد صفر ولت می باشد. البته این وضعیت می تواند در مدلهای مختلف حسگر برعکس باشد. در هر حال این حسگر در مواجهه با دو سطح نوری مختلف ولتاژ متفاوتی تولید می کند.
در زیر یک نمونه مدار راه انداز زوج حسگر نوری گیرنده فرستنده نشان داده شده است. مقادیر مقاوتهای نشان داده شده در مدلهای متفاوت متغییر است و با مطالعه دانش هوشیار شیت آنها می توان مقدار بهینه مقاومت را بدست آورد.
آشنائی با LCD
LCD ها ابزاری برای نمایش اطلاعاتی هستند که شامل حروف و اعداد و همچنین برخی کاراکترهای گرافیکی می شود. بطور معمول در تجربیات اولیه در نمایش اطلاعات دیجیتال از نمایشگر های هفت قسمتی (seven segment) استفاده می شود که این نمایشگرها فقط ارقام (0 تا 9) و بعضی حروف مثل A b C را بصورت نه چندان زیبا نمایش می دهند. اما با بکار گیری LCD اطلاعات را بصورت زیبا و کاملتر می توان نمایش داد. البته استفاده از LCD برای مدارات ساده توصیه نمی شود و عموما آنرا همرا با میکروکنترلر یا CPU ها بکار می برند.
چیزی که از آن بعنوان LCD یاد می شود درواقع یک صفحه نمایشگر LCD مانند صفحه ماشین حساب است که همراه با آی سی کنترلر و مدارهای جانبی اش و عموما با لامپ پشت صفحه در یک بسته پیش ساخته عرضه می شود.
همانطور که گفته شد LCD دارای یک کنترلر است که با فرستادن اطلاعات به آن این اطلاعات را در صفحه ای که عموما به چند سطر و ستون تقسیم شده نمایش می دهد. مثلا برای نمایش حرف "M" کافیست کد اسکی این حرف را طبق یک پروتکل ساده به LCD ارسال کنیم. همچنین می توان دستوراتی از قبیل پاک کردن صفحه نمایش، جابجایی مکان نما، خاموش روشن کردن مکان نما و غیره را نیز به LCD ارسال کرد.
LCD ها از طریق مقدار اطلاعاتی که میتوانند در صفحه نمایش بدهند انتخاب و خریداری می شوند. انواع معمول آن عبارتند از 16 ، 20 ، 32 و 40 کاراکتر در هر خط در 1 یا 2 یا 4 سطر. مثلا 2 در 16 یعنی صفحه دارای دو خط و هر خط 16 کاراکتر است. همچنین LCD موردنظر میتواند همراه با لامپ پشت صفحه (Back light) یا بدون آن انتخاب شود. LCD ها کاراکتر ها را در ماتریس های 5×7 pixel نمایش می دهند. در تصویر زیر یک نمونه 2 در 16 مشاهده می شود:
نمای پشتی:
تقریبا همه LCD ها دارای 16 پایه هستند که 8 خط آن مربوط به فرستادن یا خواندن داده ها یا دستورالعمل ها می باشد. پایه های دیگر خطوط کنترل و ولتاژهای تغذیه می باشند. لیست کامل خط ها بقرار زیر است:
شماره و نام خط
عملکرد
1- Vss
زمین
2- Vcc
ولتاژ 5 ولت برای کنترلر
3- Vee
ولتاژ تنظیم درخشندگی(contrast)
4- RS
انتخابگر ثبات دستور / داده
5- RW
انتخابگر خواندن / نوشتن
6- Enable
فعال کننده
7-14 Bus
8 خط گذرگاه داد یا دستور
15-
ولتاژ 5 ولت برای لامپ پشت صفحه
16-
زمین برای لامپ پشت صفحه
:Vee برای تنظیم درخشندگی کاراکترها بکار می رود که باید ولتاژی بین صفر و 5 ولت به این پایه اعمال نمود. برای بیشترین درخشندگی این پایه را به زمین متصل کنید.
انتخابگر ثبات داده / دستور مشخص می کند که چه چیزی به LCD فرستاده می شود. اگر این خط صفر باشد کنترلر LCD بایت موجود روی خطوط 7 تا 14 را بعنوان یک دستور تلقی کرده و اگر این پایه یک باشد اطلاعات را بعنوان یک کد اسکی که باید کاراکتر معادل آنرا نمایش دهد در نظر می گیرد.
انتخابگر خواندن / نوشتن جهت اطلاعات را نشان می دهد. اگر این پایه صفر باشد اطلاعات به LCD ارسال می شود و اگر یک باشد عمل خواندن از LCD صورت می گیرد.
فعال کننده: برای هر دستور یا داده ای که به LCD میفرستیم یا میخواهیم از آن بخوانیم باید یک پالس پائین رونده (یعنی تغییر از سطح یک به صفر) را به این پایه اعمال کنیم تا دستور یا داده بوسیله کنترلر LCD پردازش شود.
در خطوط 7 تا 14 خط 7 کم ارزشترین بیت(LSB) و خط 14 پر ارزش ترین بیت (MSB) می باشد.
در صورت تمایل به روشن کردن لامپ پشت صفحه ولتاژ 5 ولت را به پایه 15 اعمال و پایه 16 را به زمین متصل می کنیم.
برای آزمایش می توان LCD را به پورت چاپگر متصل و اطلاعاتی را به آن ارسال نمود. در این حالت بطور معمول خطوط داده پورت به خطوط 7 تا 14 و سه خط کنترلی به پایه های 4 تا 6 اتصال داده می شود توجه داشته باشید که ولتاژ تغذیه و لامپ پشت صفحه LCD توسط منبع خارجی تامین می شود.
روش فرستادن یک کاراکتر:
خط خواندن نوشتن را صفر کنید تا نوشتن انتخاب شود.
خط داده / دستور را یک کنید تا داده انتخاب شود.
کد اسکی کاراکتر مورد نظر را روی خطوط D0 تا D7 قرار دهید.
خط انتخاب را ابتدا یک و سیس صفر کنید. حداقل 450 نانو ثانیه باید این خط را صفر نگه دارید تا داده پردازش شود. بعد از آن حالت خط تاثیری نخواهد داشت.
رله ها
شکل پایه های چند نوع رله رایج
شرکت Radio Shack دارای برخی رله های مشهور است که برای تمامی مدارات موجود در این سایت مناسب می باشند. برخی از رله های این شرکت که دارای مشخصه های مناسب می باشند، عبارتند از:
– رله Mini SPDT برای جریانهای 2A . این رله فقط 18mA برای تحریک نیاز دارد و در محدوده ولتاژ 7V تا 9V کار می کند. شماره قطعه شرکت Radio Shack برای این رله 275-005 است.
– رله Mini SPDT برای جریانهای 10A . این رله یک سیم پیچ با مشخصه 400 اهم 12 ولت 30 میلی آمپر می باشد. شماره این رله 275-248 است.
– رله Mini DPDT برای جریانهای 5A . برای بسته شدن کنتاکتهای این رله، جریان 60mA از یک منبع تغذیه 12V مورد نیاز می باشد. شماره این رله 275-249 می باشد.
منابع تغذیه
تغذیه دوبل
تغذیه ترانسفورماتوری
تغذیه بوسیله یکسوکننده و ترانسفورماتور
تغذیه بوسیله یکسوکننده و ترانسفورماتور و صافی خازن
تغذیه بوسیله یکسوکننده و ترانسفورماتور و صافی خازن و رگلاتور
منطق دیجیتال
با پیشرفت علم و تکنولوزی هر روز به خیل عظیم نر م افزار ها و سخت افزار های در دسترس افزوده می شود و با آن نیز فصلی جدید در هر یک آز زمینه های اکترونیک را آغاز میکند. آیا تا کنون به نحوه عملکرد نمایشگر های تلویزیون – کامپیو تر و یا گوشی مو بایل خود اندیشیده اید؟ بی شک دنیاییست عجیب از مدار ها و منطق های قابل اجرا . در این بخش اطلاعاتی مختصر در زمینه عملکرد دیجیتال ها برایتان ارائه خوا هیم داد.
یک سیستم دیجیتال مجمو عهای از ماژول های سخت افزاری متصل بهم است که کاری خاص را در زمینه پردازش اطلا عات انجام می دهند. سیستم های دیجیتال از اندازه و پیچیدگی از چند مدار مجتمع تا مجمو عه ای از کامپیو تر های مرتبط متغیرند. در طراحی سیستم های دیجیتال از روش ماژولی استفاده می شود. ماژول ها از اجزایی چون ثبات ها – دیکدر ها عناصر حسابی و کنترل منطقی ساخته می شوند. ماژول های مختلف با مسیر های مشترک داده و کنترل به هم پیوسته می شوند تا یک سیستم کامپیو تر دیجیتال بو جود آید.
ماژول های دیجیتال در بهترین فرم بر اساس ثبات ها و عملیاتی که روی داده ها ذخیره می شود در آنها انجام می شود تعریف می گردند. عملیاتی که روی داده های ذخیره شده در ثبات ها صورت می گیرد ریز عمل نام دارد . به بیان دیگر ریز عمل یک جز عملیاتی ست که بر روی اطلاعات ذخیره شده در یک یا چند ثبات انجام می شود . نتیجه عمل ممکن است جایگزین اطلاعات دودویی قبلی در ثبات شود و یا به ثبات دیگری انتقال یابد. مثال هایی از ریز عمل عبارتند از شیفت – شمارش – پاک کردن و بار کردن است . برخی از مو لفه های دیجیتال ثبات هایی هستند که ریز عمل را پیاده سازی می کنند . مثلا یک شمارنده با قابلیت بار دار شدن موازی می تواند ریز عمل های افزایش و بار دار شدن را اجرا کند . یک ثبات شیفت(جابه جایی) دو طرفه قادر است ریز عمل های شیفت به راست و چپ را انجام دهد .
ساختمان داخلی یک کامپیوتر دیجیتال به بهترین نحو توسط موارد زیر مشخص می شود :
1-مجموعه ثبات های آن و وظابف آن
2-رشته ریز عمل های انجام شده روی اطلاعات دودویی ذخیره شده در ثبات ها
3-واحد کنترلی که موجب آغاز رشته ریز عمل ها می شود.
رشته ریز عمل ها در کامپیو تر را می توان با تشریح لفظی هر عمل مشخص کرد ولی این روش معمولا تشریحی طو لانی خواهد بود . بهتر آن است تا روشی سمبلیک را برای تو صیف رشته انتقال ها بین ثبات ها و ریز عمل های حسابی و منطقی مختلف مر بوط به این انتقال ها مشخص کنیم . استفاده از سمبل به جای تو صیف روشی ساز مان یافته و فشرده ای را برای نشان دادن رشتهای ریز عمل ها در ثبات ها و توابع کنترلی که مو جب اجرای آنها می شود فراهم می کند.
نحوه بیان سمبلیک مورد استفاده برای انتقال های ریز عملی در بین ثبات ها زبان انتقال ثبات ها خوانده می شود. اصطلاح " انتقال ثبات ها" بیانگر وجود مدارات منطقی سخت افزاریست که می تواند یک ریز عمل بیان شده را اجرا نماید و نتیجه عمل را به همان ثبات و یا ثبات دیگر انتقال دهد . کلمه "زبان" از بر نامه نویسان اقتباس شده است که این کلمه را برای زبان های بر نامه نویسی ا به کار می برند . زبان بر نامه نویسی رو یهای برای نوشتن سمبل هایی ست که فرایند محاسباتی خاصی را مشخص می کند . به طور مشابه یک زبان طبیعی مانند انگلیسی سیستمی ست برای نوشتن سمبل ها و تر کیب آنها به صو رت کلمات و جملات برای ارتباط بین انسانها . زبان انتقال ثبات هم سیستمی ست برای بیان رشته ریز عمل ها بین ثبات های یک ماژول دیجیتال به صورت سمبلیک.
چنین زبانی ابزار مناسبی برای تو صیف فشرده و دقیق سازمان داخلی کامپیو تر های دیجیتال است . همچنین می توان از آن برای تسهیل روند طراحی دیجیتال استفاده کرد.
اعتقاد بر این است که زبان انتقال ثبات به کار رفته تا حد امکان ساده باشد بنابر این به خاطر سپردن آن طولی نخو اهد کشید . اما ورود به دنیای آن شما را با حجم عظیمی از افکار و ایده های نو روبه رو خواهد ساخت که هر یک ممکن ایت سر آغاز تحولی در هر یک از زمینه های منطق دیجیتال باشد.
واژه دیجیتال و صد ها واژه دیگر همواره ذهن بسیاری از ما را به خود مشغول می سازد که هر یک می تواند تحریکی باشد در جهت تلاشی عظیم و اتصال به دریای منطق هاو زبانها….می شناسند.
سیستم های دیجیتال
سیستم های دیجیتال در زندگی روزانه بشر نقش برجسته ای دارند و به همین دلیل دوره تکنو لوژی فعلی را عصر دیجیتال می خوانند. سیستم های دیجیتال در مخابرات – تجارت- کنترل ترافیک- هدایت سفینه های فضایی – اعمال جراحی – هوا شناسی – اینترنت و بسیاری از دیگر زمینه های تجاری صنعتی و علمی به کار می روند. ما از تلفن های دیجیتال- تلویزیون های دیجیتال و… استفاده می کنیم. مهمترین خاصیت یک کامپیوتر دیجیتال همگانی بودن آن است. کامپیوتر می تواند رشتهای از دستورات به نام بر نامه را که روی داده های مفروض عمل می کنند دنبال نماید. کاربر می تواند برنامه یا داده خود را طبق نیاز انتخاب و اجرا کند. به علت این انعطاف کامپیو تر های همه منظوره دیجیتال می توانند عملیات پردازش اطلاعات را در محدوده وسیعی از کاربردها انجام دهند.
یکی از ویژگی های سیستم دیجیتال توانمندی آنها در دستکاری عناصر گسسته اطلاعاتیست. هر مجمو عه ای که به تعداد متناهی از عناصر محدود باشد اطلاعات گسسته را داراست. مثال هایی از عناصر گسسته عبارتند از 10 رقم دهدهی- 26 حروف الفبا- 52 ورق بازی- 64 مربع باری شطرنج.
کامپیوتر های دیجیتال اولیه برای محاسبات عددی به کار می رفتند. در ابین حال عناصر گسسته به کار رفته ارقام بودند. نام دیجیتال یا رقمی از این مفهوم حاصل شده است. عناصر گسسته اطلاعاتی در یک سیستم دیجیتال با کمیت های فیریکی به نام سیگنال نشان داده می شوند. رایج ترین سیگنال های الکتریکی عبارتند از ولتاژ و جریان. وسایل الکتریکی به نام ترانزیستور در مداراتی که این سیگنال ها را پیاده سازی می کنند به طور چشمگیری به کار میروند.
سیگنال ها در بسیاری از سیستم های دیجیتال الکترونیک امروزی تنها دو مقدار را دارا هستند و بنابر این گو.ییم دودویی اند. یک رقم دودویی که بیت خوانده می شوددو مقدار دارد0 و 1 . عناصر گسسته اطلاعاتی با گروهی از بیت ها به نام کد های دودویی نمایش داده می شوند. مثلا ارقام دهدهی 0 تا9 در سیستم هعداد دیجیتال با کد چهار بیتی نمایش داده می شوند. با به کار گیری تکنیک های مختلف گرو هایی از بیت ها برای نمایش سمبل های گسسته تعریف می شوند و سپس در توسعه یک سیستم در قالب دیجیتال مورد استفاده قرار می گیرد. در نتیجه یک سیستم دیجیتال سیستمی ست که عناصر گسسته اطلاعاتی به شکل دودویی را ر درون دستکاری می کند.
کمیت های اطلاعاتی یا ذاتا گسسته اند و یا از نمونه برداری (کوانیزه کردن) فرایند های پیوسته حاصل می شوند. به عنوان مثال یک لیست حقوق ذاتا یک فرایند یا رویداد گسسته بوده و حاوی نام کارمند- حقوق هفتگی- مالیات- و… است. پرداختی به یک کارمند با استفاده از مقادیر داده گسسته ملنند حروف الفبا- ارقام- و نماد ها یا سمبل های خاص پردازش می گردد. از طرف دیگر یک محقق ممکن است یک پدیده را به صورت پیوسته مشاهده کند. ولی فقط مقادیر خاصی را به صورت جدول ثبت نماید. بنابر این فرد محقق داده پیوسته را نمونه برداری می نماید ولی هر کمیت در جدول را از عنلصر گسسته می سازد. در بسیاری از حالات نمونه برداری از یک فرایند به طور خودکار به وسیله دستگاهی به نام مولد آنالوگ به دیجیتال انجام می شود.
بهترین مثال از یک سیستم دیجیتال کامپیوتر دیجیتال همه منظوره است. بخش های اصلی یک کامپیوتر عبارتند از واحد حافظه- واحد پردازش مرکزی و واحد های ورودی /خروجی
واحد حافظه برنامه ها و ورودی های وارده خارج شونده و میانی را ذخیره می کند. واحد پردازش مرکزی اعمال محاسباتی و دیگر عملیات روی داده ها را بر حسب آنچه در برنامه مشخص شده انجام می دهد. داده ها و بر نامه هایی که به وسیله کاربر آماده شده اند به وسیله عناصر ورودی مانند صفحه کلید به حافظه انتقال می یابد. یک وسیله خروجی مثل چاپگر نتایج حاصل از محاسبات رات دریافت کرده و به کاربر ارائه می دهد. یک امپیو تر دیجیتال می تواند به چندین وسیله ورودی و خروجی وصل شود. یکی از وسایل مفید واحد مخابره است که تبادل داده را از طیق اینترنت با دیگر کاربان بر قرار می سازد. یک کامپیو تر دیجینال دستگاهی توانمند است که نه تنها می تواند محاسبات ریاضی را انجام دهد بلکه قادر است اعمال منطقی را نیز انجام نماید. به علاوه می تواند جهت تصمیم گیری بر اساس شرایط داخلی یا خارجی بر نامه ریزی شود.
برای استفاده از مدادات دیجیتال در تولیدات تجاری دلایل اساسی و جود دارد. همچنین کامپیو تر های دیجیتال دستگاههایی قابل برنامه ریزی اند. . با تعویض بر نامه در وسیله بر نامه پذیر سخت افزار یگانه ای قابل استفاده در کار برد های متفاوت خواهد بود. کاهش قیمت شدید در وسایل دیجیتال به دلیل پیشرفت در تکنو لوژی مدار های مجتمع دیجیتال مرتبا روی می دهد. با افزایش تعداد ترانزیستور ها در یک قطعه سیلسکان توابع پیچیده تری قابل پیاده سازی شده قیمت هر واحد کاهش یافته و قیمت هر دستگاه دیجیتال نیز روز به روز کاهش می یابد.
دستگاه های دیجیتال با مدار های مجتمع می توانند با سرعتی تا صد میلیون عدد در ثانیه را انجام دهند. می توان با استفتده از کد های اصلاح خطا عملکرد سیستم های دیجیتال را به شدت اطمینان بخش نمود.
مدارهای ترتیبی
بلوک دیاگرام یک مدار ترتیبی در شکل نشان داده شده است ، این مدار شامل یک مدار ترکیبی است که عناصر حافظه برای تشکیل یک مسیر فیدبک به آن متصل شده اند . عناصر حافظه قطعاتی هستند که می توانند اطلاعات دودویی را در خود ذخیره نمایند .این اطلاعات در هر زمان مفروض در آنها مشخص کننده ی حالت مدار است. مدار ترتیبی ، اطلاعات دودویی را از ورودی ها دریافت می کند و این ورودی ها به همراه حالت عناصر حافظه ، یک مقدار دودویی را درپایه های خروجی مشخص می نمایند. آنها هم چنین مشخص می کنند که در چه وضعیتی عناصرحافظه تغییر حالت می دهند . بلوک دیاگرام مربوطه نشان میدهد که خروجی های یک مدار ترتیبی نه تنها تابعی از ورودی های مدار بلکه تابعی از حالت عناصر حافظه نیز می باشند . همچنین حالت بعدی عناصر حافظه نیز تابعی از ورودی ها و حالت قعلی آنها ست بنابر این یک مدار ترتیبی بوسیله ی ترتیب زمانی ورودی ها و حالت داخلی اش مشخص می گردد.
مدارهای ترتیبی از نظر مسائل زمانی سیگنال هایشان به دو نوع اساسی سنکرون و آسنکرون طبقه بندی می شوند.
یک مدار ترتیبی سنکرون ، سیستمی است که از روی سیگنالهایش در فواصل گسسته ی زمانی میتوان عملکردش را تعیین نمود و در مقابل ، عملکرد یک مدار ترتیبی آسنکرون به ترتیب تغییر سیگنالهای ورودی آن که می توانند در هر لحظه از زمان روی مدار تاثیر بگذارند وابسته است.
عناصر حافظه ای که بطور معمول در مدارهای ترتیبی آسنکرون بکار می روند قطعات تاخیر زمانی هستند . قابلیت حافظه ی یک قطعه ی تاخیر زمانی ناشی از این حقیقت است که این قطعه به زمان محدودی برای انتشار در داخل خود نیاز دارد . تاخیر انتشار داخلی یک گیت منطقی در عمل برای ایجاد تاخیرمورد نیاز کافی است ، بنابراین نیازی به واحدهای فیزیکی تاخیر زمانی وجود ندارد.
در سیستم های آسنکرون از نوع گیت ، عناصر حافظه ی شکل مورد نظر از گیت هایی تشکیل شده اند که تاخیرانتشارشان حافظه ی مورد نظر را بوجود می آورد . بنابراین یک مدار ترتیبی آسنکرون را می توان بصورت یک مدار ترکیبی که دارای فیدبک می باشد در نظر گرفت . بدلیل وجود فیدبک در میان گیت های منطقی ، یک مدار ترتیبی آسنکرون می تواند در لحظاتی از زمان ناپایدار باشد که مسئله ناپایداری مشکلات بسیاری به طراح تحمیل می نماید.
با توجه به تعریف یک سیستم ترتیبی سنکرون ، این سیستم می بایست سیگنال هایی را بکار گیرد که فقط در لحظات گسسته ی زمانی روی حافظه اش اثر می گذارند یک روش برای رسیدن به این هدف ، استفاده از پالس هایی با تداوم محدود در سیستم است بطوری که بیانگر 1 منطقی و پالس دیگر ( یا نبود پالس ) نشان دهنده ی 0منطقی باشد . مشکل استفاده از چنین پالسهایی این است که هر دو پالسی که از منابع مستقل به ورودی های یک گیت می رسند ، تاخیرشان در داخل آن گیت قابل پیش بینی نخواهد بود که بتدریج از هم جدا شده و نهایتا عملیات غیرقابل اعتمادی را نتیجه خواهند داد.
سیستم های ترتیبی سنکرون عملا برای پالسهای دودویی از نوسان کننده های ثابتی مانند سطوح ولتاژ استفاده می کنند . همزمانی این پالس ها با استفاده از قطعات زمانی ، که تولید کننده اصلی پالس ساعت نام دارند ، انجام می شود که این قطعات دنباله ای پریودیک از پالسهای ساعت را تولید می کنند . نحوه ی توزیع پالسهای ساعت در سیستم بگونه ای است که عناصر حافظه فقط به هنگام رسیدن یکی از پالسها تحریک می شود . در عمل پالسهای ساعت به همراه پالسهایی که تغییر لازمه را در عناصر حافظه ایجاد می کنند به گیت های AND اعمال می شوند . بنابر این گیت های AND فقط در زمان رسیدن پالسهای ساعت می توانندسیگنال ها را انتقال دهند . مدار های ترتیبی سنکرونی که از پالسهای ساعت در ورودی های عناصر حافظه ی خود استفاده می کنند مدارهای ترتیبی با پالس ساعت نامیده می شوند که کاربرد بسیار وسیعی دارند و غالبا با آنها مواجه می شویم . آنها مشکل ناپایداری در نگهداری اطلاعات را ندارند و مسائل زمانی شان بسادگی قابل تقسیم به بخشهای گسسته ی مستقل است که هر کدام از این قسمت ها بطور جداگانه در نظر گرفته می شوند .
عناصرحافظه ای که در مدارهای ترتیبی با پالس ساعت بکار می روند فلیپ فلاپ نامیده می شوند . فلیپ فلاپ ها سلولهای دودویی هستند که قادر به ذخیره ی یک بیت از اطلاعات می باشند . مدار یک فلیپ فلاپ دارای دو خروجی است ، یک برای مقدارطبیعی بیت ذخیره شده در آن و دیگری برای متمم آن .
حافظه های الکترونیکی
ممکن است تا به حال برای شما هم پیش آمده باشد هنگامی که به شدت احتیاج به یک دیسکت یا سیدی برای انتقال یا ظبط اطلاعات دارید با بحران کمبود اطلاعات مواجه شوید در این مواقع سر رسیدن یک دوست در حالی که وسیلهای کوچک را بر گردن آویخته و می تواند اطلاعات را در آن ذخیره نماید بیشتر شبیه معجزه است.
این وسیله کوچک فلش مموری (flash memory) نام دارد که ممکن است آن را به نام mp3 player یا کول دیسک شنیده باشید. آیا میدانید توپولوژی این گونه سخت افزار ها چگونه کار می کند؟
حافظه های الکترونیکی در انواع مختلف و به منظور کاربرد های متفاوتی ایجاد شده اند. یکی از پر کاربرد ترین و جالب ترین این حافظه ها فلش مموری نام دارد. فلش مموری برای ذخیره سازی سریع در دستگاههایی مانند دوربین های دیجیتال و نسول بازی استفاده می شود. این وسیله جایگزین مناسبی برای هارد دیسک تلقی می شود و در حقیقت فلش نوعی حافظه جانبی تلقی می شود.
در حقیقت فلش مموری یک ابزاری برای ذخیره ساری solid state مطرح شده است. Solid state یعنی بخش متحرکی در آن به کار نرفته و فاقد ابزار مکانیکی است. و از اجزای کاملا الکترونیکی تشکیل شده است.
به عنوان مثال تراشه BIOS فلش های فشرده در دوربین های دیجیتال / کارت های دیجیتال / کارت های حافظه PCMCIA های نوع یک و دو در لپ تاب ها و .. از انواع مموری ها هستند. اساس کار فلش مموری همانند دستور العملی ست که تراشه های اکتریکی از آن استفاده می کنند.
حافظه فلش یک نوع از EEPROM(Electronically Erasable Programmable Read only memory ) است که از شبکه ای ماتریسی (سطری ستونی) از سلول هایی با دو ترانزیستور در هر تقاطع سطر ستون تشکیل یافته است. دو ترانزیستور به وسیله لایه نازکی از اکسید از یکدیگر جدا گردیده اند و به طور مستقل کار می کنند.
یکی از ترانزیستور ها همانند دریچه ای شناور عمل می نماید و دیگری مسئولیت دریچه کنترل ره به عهده دارد . تنها اتصال گیت شناور به سطر یا word line از میان گیت کنترل می گذرد. تا زمانیکه این پیوند بر قرار است مقدار سلول حافظه برابر یک قرار می گیرد. برای تغییر مقدار یک به صفر لازم است یک پردازش خاص به نام Fowler -Nordheim tunneling انجام گیرد.
از این پردازش برای عوض کردن نوع بار الکتریکی قرار گرفته در گیت شناور استفاده می شود. شارژ الکتریمی که معمولا بین 10 تا 13 ولت است به گیت شناور اعمال می گردد. این ولتاژ از ستون ها یا bitline می گذرد و پس از عبور از گیت شناور به زمین منتقل می شود.
این شارژ باعث می شود که ترانزیستور گیت شناور مانند یک تفنگ الکترونی عمل کند. بدین صورت که الکترون های موجود در گیت شناور به شدت به بیرون از ترانزیستور رانده می شود و در لایه نازک اکسید به دام می افتند و بار منفی را به آن منتقل می نماید این بار همانند یک مرز بین گیت کنترل و گیت شناور عمل میکند.
به وسیله مخصوصی که cell sensor نامیده می شود مقدار شارژ فرستاده شده توسط گیت شناور را بررسی می نماید. اگر این مقدار بیش از نیم شارژ فرستاده شده بود مقدار فعلی سلول برابر یک است. اما اگر این ولتاژ کمتر از نیم ولتاژ شارژ بود مقدار آن سلول صفر تلقی می شود.
در یکEEPROM خالی تمام گیت ها کاملا باز هستند و مقدار یک را نمایش می دهند.
امروزه با افزایش قدرت فلش مموری ها شرکت های بزرگ در صدد تو سعه زمینه کار برد های فلش بر آمده اند. فلش وسیله مناسبی برای جابه جایی اطلاعات است و توانسته رقیب مناسبی برای سی دی تلقی شود . توانایی پخش فایل های صوتی و حتی تصویری بر قدرت فلش افزوده است و توانسته جایگاه مناسبی در بین کاربران پیدا کند.
کار با مولتی متر
آیا تا کنون به آزمایشگاه برق – الکترونیک وارد شده اید؟ ممکن است که ترس از برق گرفتگی و یا هر حاد ثه ای دیگر سدی برای کنجکاوی شما گردد. اما در واقع چنین نیست . با رعایت کردن کلیه نکات ایمنی بی شک شما نیز می توان از لذت کشفیات جدید و یا حتی شنیدن صدای یک بوق ساده که ساخته دست خود شماست برخوردار گردید.
مولتی متر:
مولتی متر ها امروزه در انواع مختلف دیجیتالی با قابلیت های متفاوت در بازار یافت می شود. برای شروع بد نیست با ساده ترین آن "مولتی متر selector ی " کار خود را آغاز کنیم.
در شمای کلی این دستگاه یک صفحه مدرج به همراه یک selector مشاهده می کنید. همانطور که از اسم آن مشهود است این دستگاه برای اندازگیری کمیت هایی مانند اختلاف پتانیسل- مقاومت- جریان طراحی گردیده و برای استفاده از selector دستگاه به ترتیب بر روی واژه های volt- ohm – ampere کمک گرفته می شود.
لازم به تذکر است روی دسته سلکتور نشانگری مو جود است که تعیین کننده دامنه کاری در اندازگیری های شما می باشد.
این دستگاه نیز مانند هر سیستم دیگری دارای دو ترمینال آند و کاتد می باشد. برای استفاده صحیح از دستگاه بایستی سیم مشکی را به ترمینال منفی و سیم قرمز را به ترمینال مثبت متصل کنید. حال دکمه power دستگاه را زده و هر نوع اندازگیری را می توانید شروع کنید.
حال فرض می کنیم که مقاوتی را که می خواهیم آزمایش کنیم 100 اهم باشد. با تو جه به اینکه سلکتور روی 1*R ایستاده عقربه عدد 100 را نشان میدهد و چنانچه رنگهای روی مقاومت پاک شده باشند در خواهیم یافت که مقاومت ما 100 اهمی است ولی اگر مقاومت ما از 5 کیلو اهم بیشتر باشد عقربه تقریبا روی علامت بینهایت می ایستد و ما در این مبنا نمی توانیم مقدار مقاومت را بخوانیم . از این رو سلکتور را روی R*10 قرار میدهیم.
R*10 به این معنی است که اگر عقربه هر عددی را نشان دهد آن عدد باید ضربدر 10 شود تا مقدار اصلی مقاوت را بتوانیم بخوانیم.
به عنوان مثال اگر مقاومت ما 10 کیلو اهم باشد عقربه روی یک کیلو اهم می ایستد و اگر یک کیلو را ضربدر 10 کنیم مقدار اصلی مقاومت که همان 10 کیلو اهم است به دست می آید. در این ردیف Range یا مبنا نیز بیشتر از 50 کیلو اهم را نمی توان خواند. پس اگر مقاومت ما از این مقدار بیشتر باشد باید سلکتور را روی R*100 قرار دهیم و همانطور مانند قبل هر چه عقربه نشان داد باید این دفعه ضربدر 100 کنیم.
مطلبی را که باید یاد آور شویم این است که هر وقت ما مبنا و یا رنج را در قسمت آزمایش مقاومتها عوض کنیم باید عقربه را "میزان" یا Adjust کنیم.
طریقه میزان کردن عقربه(calibration):
به این ترتیب است که اگر سلکتور را روی RX قرار دادیم باید دو سیم اهم متر را به هم وصل کنیم. در این صورت عقربه منحرف می شود و باید روی عدد صفر بایستد. چون مقاوتی بین دو سیم اهم متر وجود ندارد. ولی اگر اینطور نشد باید عقربه را با ولومی که سمت راست اهم متر با علامت اهم نشان داده شده میزان کنیم تا روی عدد صفر بی حرکت بماند و بعد مقاومت مورد نظر را آزمایش می کنیم .
حال به قسمت ولتاژها می پردازیم:
ابتدا از ولتاژ مستقیم DC.V شروع می کنیم. همانطور که میبینید این قسمت دارای شش مبنای اندازگیری است که از 0.25 ولت تا 1000 ولت مستقیم را می تواند اندازه بگیرد. طرز کار این قسمت نیز تقریبا مانند اهم است یعنی اگر سلکتور را روی 10 ولت قرار دهیم دستگاه ما حداکثر تا 10 ولت را می تواند نشان دهد.
این طبقه بندی اعداد را روی صفحه قسمتی که سه طبقه عدد قرار دارد می توانید ببینید. سمت چپ مدار نیز با DC.V و میلی آمپر مشخص شده . حال اگر شما خواسته باشید که یک باتری و یا منبع تغذیه جریان مستقیم را آزمایش کنید باید سیم مثبت دستگاه را به مثبت منبع تغذیه و سیم منفی دستگاه را به منفی منبع تغذیه وصل نمایید. اگر چنانچه باتری شما به عنوان مثال شش ولت است باید سلکتور را روی عدد 10 قرار دهید. در این صورت عقربه عدد 6 را نشان می دهد ولی اگر باتری شما از 10 ولت بیشتر و از 50 ولت کمتر بود باید سلکتور را روی عدد 50 قرار داد و چنانچه بیشتر بود روی 1000 ولت.
برای اندازگیری جریان مستقیم نیز مانند ولتاژ عمل میکنیم . یعنی اگر سلکتور را روی عدد 0.5 قرار دهیم دستگاه حداکثر تا 0.5 میلی آمپر میتواند اندازه بگیرد و اگر روی 10 باشد حداکثر 10 میلی آمپر و چنانچه روی 250 باشد تا 250 میلی آمپر.
آشنایی با دستگاه اسیلوسکوپ
در این قسمت قصد داریم یک دوره کوتاه و ساده از کار با اساسی ترین وسایل تولید و اندازه گیری سیگنال های الکتریکی ارایه کنیم. سعی کردیم که توضیحات به زبانی ساده بیان شود .
یک راهنمای قدم به قدم استفاده از اسکوپ نیز در انتهای مطالب قرار دادیم تا مورد ا استفاده سریع شما قرار گیرد
1- اسیلوسکوپ (oscilloscope)
اصولا کلمه oscilloscope به معنی نوسان نما یا نوسان سنج است و این وسیله برای نمایش دوبعدی سیگنال های متغیر با زمان است. که محور افقی نمایش زمان و محور عمودی محور اختلاف ولتاژ بین دو نقطه از مدار است. پس اسیلوسکوپ فقط توانایی نمایش ولتاژ رو داره و وسیله ای صرفا برای اندازه گیری است و یک اسکوپ ایده آل نباید هیچ تاثیری بر روی سیگنال ورودی داشته باشه و فقط اون رو نمایش بدهد.
2- تنظیمات پایه
اگرچه کلیدهای کنترلی اسکوپ های مختلف کمی با هم فرق می کنه ولی در مجموع در اسکوپ های آنالوگ یک سری کلید های اساسی وجود داره که اگرچه در ظاهر تفاوت هایی وجود داره ولی در نهایت وظیفه ی اونا در مدل های مختلف یکیه و در شکل زیر یکی از ساده ترین مدل ها رو می بینید. این شکل به چهار قسمت مختلف تقسیم شده که سه قسمت مهم ان نامگذاری شده که در زیر توضیح اون ها است
aکنترل فرکانس
بسته به این که بخواهیم از کدوم یک از ورودی های اسکوپ استفاده کنیم می تونیم کلید MODE رو تنظیم کنیم که به ترتیب از بالا به پایین اسکوپ، روی صفحه نمایش، کانال یک، کانال دو، دو موج را همزمان و در وضعیت ADD، جمع ریاضی دو موج را نشان خواهد داد.
توجه1: بعضی از اسکوپ ها بجای کلید DUAL دو کلید دیگر به نام های ALT و CHOP دارند که هر دوی اون ها هم دو موج رو همزمان نمایش می دن اما تفاوت ALT و CHOP در اینه که ALT یک دوره تناوب از یک موج رو به طور کامل و بسیار سریع نمایش میده و بعد موج کانال دیگه رو. اما این تغییر انقدر سریع انجام میشه که ما اون رو حس نمی کنیم. اما وضعیت CHOP به صورت انتخابی بریده هایی از یک موج و بریده هایی ازیک موج دیگه رو هم زمان نشون میده که ممکنه شکل موج در فرکانس های پایین با نقطه هایی خالی نشون داده بشه.
توجه2:(MODE X-Y) در بعضی از اسکوپ ها دکمه ی تغییر وضعیت به X-Y در کنار همین دکمه های Vertical mode قرار داره و در بعضی در قسمت تریگر و برخی در قسمت های دیگه مثلا کلید MODE (نه Vertical MODE مثل چیزی که در بالا توضیح داده شد). اما چیزی که مهمه اینه که این وضعیت برای حذف بین دو کانال استفاده میشه و درواقع اونچه بر روی اسکوپ نشون داده میشه، مشخصه ی انتقالی بین دو نقطه است که محور عمودی معرف تغییرات کانال A و محور افقی نمایش تغییرات کانال B است.
. b.کنترل زمان
همون طور که در شکل قسمت 1 می بینید صفحه نمایش (CRT) اسکوپ با واحدهایی مدرج شده که در مورد زمان برای پیدا کردن فرکانس موج استفاده می شه به این شکل که فرض کنیم یک موج به ورودی اسکوپ وارد شده(منبع اش می تونه مثلا یک سیگنال ژنراتور یا یک ترانس باشه که توضیح داده خواهد شد) و ما می خواهیم فرکانس اش رو پیدا کنیم. اول باید سوییچ Sweep time/Div رو به صورتی تنظیم کنیم که یک موج ثابت با حداقل یک دوره ی تناوب بر روی صفحه مشخص بشه، بعد از اون عددی رو که سوییچ روی اونه در واحد اون قسمت ضرب کنیم و به این ترتیب دوره ی تناوب یا پریود موج به دست می یاد که با معکوس کردن اون می تونیم فرکانس اش رو به دست بیاریم. مثلا فرض کنیم در مورد موج بالا اگه سوییچ time/div(بخونید تایم دیویژن) روی عدد 5 در قسمت ms باشه، نشون می ده که هر واحد افقی ما 5 میلی ثانیه رو نشون می ده و از اون جایی که موج ما در یک دوره ی تناوب در امتداد 4 خونه قرار گرفته، پس 4 تا 5 میلی ثانیه که 20 میلی ثانیه(یا 0.02 ثانیه) است دوره ی تناوب این موجه و در نتیجه فرکانس اون 0.02/1 یا پنجاه هرتزه که مثلا می تونه خروجی یه ترانس از برق شهری باشه.
c.کنترل ولتاژ یا دامنه
کنترل دامنه یا روش خوندن دامنه ی موج دقیقا مثل روش خوندن زمانه با این تفاوت که باید واحد های عمودی در Volt/Div (بخونید ولت دیویژن) ضرب بشه. مثلا در مورد موج بالا اگه بخواهیم ولتاژ P-P (پیک تو پیک یا از قله تا قله) رو اندازه بگیریم. با فرض اینکه Volt/Div بر روی عدد 1 باشه از قله تا قله ی موج ما 4 خونه رو اشغال کرده که ضربدر عدد یک، 4 ولت رو نشون میده. و این تنظیمات برای هر کانال ورودی باید به طور جداگانه انجام بشه و موج هر کانال باید بر اساس مقیاس خودش خونده بشه.
نکته ی مهم: در اکثر اسکوپ ها روی دستگیره های Time/Div و Volt/Div یه دستگیره ی کوچکتر وجود داره که برای کالیبره کردن اسکوپ استفاده میشه و ما همیشه باید قبل از تنظیم این سوییچ ها این دستگیره ی کوچکتر رو تا انتها در جهت عقربه های ساعت بچرخونیم در غیر اینصورت اندازه گیری های ما صحیح نخواهد بود.
d. انتخاب وضعیت های AC , GND , DC
این کلید سه حالته که معمولا زیر Volt/Div قرار داره به ما امکان میده که نوع خروجی مون رو انتخاب کنیم به این صورا که اگر کلید در وضعیت AC قرار داشته باشه تنها مولفه ی AC سیگنال نمایش داده خواهد شد و مقدار DC یا آفست موج ما حذف خواهد شد. وضعیت GND ورودی ما را به زمین اتصال کوتاه می کند و امکان تنظیم عمودی سطح صفر رو به ما میده. و وضعیت DC موج رو دست نخورده و بدون تغییر به ما نشون می ده که این موج مقدار شامل DC و AC خواهد بود.
توجه: همیشه در ابتدای کار باید از تنظیم بودن وضعیت صفر اسکوپ مطمئن بشیم به این ترتیب که کلید رو در حالت GND قرار داده و با دستگیره های Position خط افقی را بر روی صفر قرار دهیم. اینکار را باید برای هر کانال به طور جداگانه باید انجام دهیم و برای تغیر وضعیت از یک کانال به کانال دیگه می تونیم از کلید MODE (که توضیح داده شد) استفاده کنیم.
نکته1: استفاده از وضعیت AC اگرچه می تونه باعث مسدود کردن مقدار DC موج بشه اما در فرکانس های پایین می تونه باعث اعوجاج و به هم ریختگی شکل موج بشه و دلیل این مسئله استفاده از خازن های ظرفیت بالایی است که برای حذف مقدار DC موج درون اسکوپ وجود داره.
نکته2: اگرچه استفاده از وضعیت AC، ممکنه مشکل مطرح شده در قسمت الف رو بوجود بیاره، اما استفاده ی مفید اون می تونه برای اندازه گیری ریپل های بسیار کوچک موجود بر روی ولتاژ های به ظاهر DC باشه.
نکته3: تنها مشکل وضعیت DC اینه که ممکنه مقدار DC موج، مزاحم اندازه گیری دقیق مقدار AC بشه.
اساسی ترین مسائل مربوط به اسکوپ رو بررسی کردیم ولی مطالب دیگه ای هم وجود داره که معمولا در استفاده های مقدماتی کمتر از اونا استفاده میشه مثل تریگر کردن اسکوپ با یک منبع خارجی(و کلا بخش Triggering) یا کالیبره کردن اسکوپ بوسیله ی سیگنال مربعی یی که اسکوپ در اختیارمون قرار میده و یا مسایل نسبتا گسترده در رابطه با پروب ها جهت اندازه گیری های بسیار دقیق آنها می باشد.
راهنمای قدم به قدم استفاده از اسکوپ
قدم اول: روشن کردن اسکوپ!
قدم دوم: اطمینان از کالیبره بودن اسکوپ
کلید های Gain Variable Control رو که به صورت کلیدی کوچکتر بر روی کلیدهای Volt/Div و Time/Div وجود داره تا انتها در جهت عقربه های ساعت بچرخونید.
قدم سوم: تنظیم زمین اسکوپ
کلید سه حالته ی AC GND DC رو برای هر دو کانال در حالت GND قرار بدید و با دستگیره ی Position محور عمودی رو روی صفر قرار بدید. بوسیله ی کلیدهای Intensity و Focus به ترتیب شدت نور و نازکی موج رو تنظیم کنید و بعد از تنظیم زمین کلیدها رو در وضعیت DC قرار بدید.
قدم چهارم: وصل مدار به اسکوپ
اگر از یک کانال می خواهید استفاده کنید با یک پروب و اگه از دو کانال با دو پروب باید مدار رو به اسکوپ وصل کنید. به این صورت که سوکت پروب رو به ورودی کانال مورد نظر وصل کنید و سر دیگه ی اون رو به دو سر المان یا قسمتی از مدار که می خواهید تغییرات ولتاژ اون رو بررسی کنید، وصل کنید
قدم پنجم: پایداری موج
اگه موجی که روی صفحه نشون داده میشه یا سریع حرکت میکنه، دستگیره ی Trigger Level رو در حالت وسط قرار بدید و یه کم Time/Div رو هم تغییر بدید تا شکل موج واضحتر بشه و اگه موجتون ثابت بود به قدم بعد برید.
قدم ششم: انتخاب منبع
کانال مورد نظرتون رو برای نمایش روی صفحه بوسیله ی کلید چند حالته ی Vertical Mode انتخاب کنید. اگه هر دو کانال رو هم زمان می خواهید ببینید یکی از حالتهای ALT یا CHOP رو انتخاب کنید و اگه مجموع دو موج مورد نظرتونه وضعیت ADD رو انتخاب کنید
قدم هفتم: اندازه گیری مشخصات موج
تعداد خونه های افقی رو که در امتداد یک دوره ی تناوب قرار گرفته اند در واحد Time/Div ضرب کنید و عدد به دست اومده رو معکوس کنید تا فرکانس موج بدست بیاد. برای بدست اوردن دامنه ی سیگنال، تعداد خونه های افقی رو از قله تا پایین ترین نقطه ی موج بشمارید و در Volt/Div اون کانال ضرب کنید. عدد به دست اومده اندازه ی دامنه ی P-P موج خواهد بود.
اگه مدارتون رو دست بسته باشید و اسکوپ تون هم سالم باشه باید بعد از این مراحل یک شکل موج ثابت رو بر روی اسکوپ ایجاد کرده باشید و مشخصات اون رو هم اندازه گیری کرده باشید. در غیر اینصورت باید دنبال پیدا کردن اشکال مدارتون یا اطمینان از سالم بودن اسکوپ باشید
فصل چهارم:
چند آی سی پرکاربرد
آی سی 555
آی سی 555 یکی از معروف ترین و پرکاربردترین المانهای مجود در بازار است که به آی سی تایمر نیز معروف است. در بیشتر مدارات از این قطعه برای ایجاد پالس با فرکانس های متفاوت استفاده می گردد. مشخصات کامل پایه ها در شکل آمده است. این آیسی را می توانید در دو وضعیت مونواستابل وآ استابل مورد استفاده قرار داد.در حالت مونو استابل تولید و شکل پالس قابل کنترل است.که این کنترل عموما از طریق پایه 2 آیسی555 صورت می گیرد.اما در حالت آستابل در صورت داشتن تغذیه مثبت و منفی در پایه های 1و4و8 واتصال خازن و مقاومت درپایه های 2و6و7 به طور خودکار و بدون تحریک پالسهای ثابت وتعیین شده ای را ایجاد می کند.پایه 3 این آیس همواره پایه خروجی است.
این آیسی کاربردهای فراوانی دارد که از آن جمله می توان به تولید پالس، کنترل پهنای پالس، مدارات تایمر و فرستنده و گیرنده وغیره…. اشاره کرد.
آی سی موتور درایور ال 298
درایور L298 یکی از قطعات مناسب جهت راه اندازی موتور است که با توجه به جریان دهی مناسب ( تا یک آمپر در هر کانال ) می تواند نیاز بسیاری از پروژه ها را مرتفع سازد. این قطعه با مدار ارائه شده می تواند دو موتور را به صورت مجزا راه اندازی کرده و جهت گردش آنها را کنترل نماید. که این کنترل توسط اعمال ولتاژ به چهار ورودی منطقی این قطعه صورت می گرد. ( برای هر موتور دو ورودی ) که می توان خروجی میکروکنترلر یا مدارات حسگر را به صورت مستقیم به این چهار ورودی متصل نمود و به راحتی موتور را کنترل کرد. در صورتی که از این قطعه برای راه اندازی موتورهای روبات خود بهره میگیرید دقت کنید که حتماً بر روی آن حرارت گیر مناسب وصل نمایید.
این مدار تنها یکی از راه های اتصال درایور ال 298 L298 به موتور را نشان می دهد. در این مدار پایه های حسگر جریان ( current sensing pins ) به زمین متصل شده اند که با روشهایی می توان توسط این پایه ها جریان مصرفی موتور را کنترل نمود همچنین کنترل سرعت را می توان به روش مدلولاسیون پهنای باند PWM (Pulse Width Modulation) و با اعمال فرکانس به پایه های 6 و 11 انجام داد که با اعمال +5 ولت موتور روشن و با اعمال 0 موتور خاموش می گردد. در این مدار پایه های مذکور به +5 ولت متصل شده اند و موتور با حداکثر سرعت گردش خواهد نمود.
جدول عکس العمل موتور نسبت به ورودی
تشریح پایه های درایور موتور ال 298 L298
Pin 1. CURRENT SENSING A
از این پایه جهت کنترل جریان موتور A استفاده می گردد. همچنین می توان این پایه را به صورت مستقیم به خط منفی مدار GND اتصال داد که در این صورت کنترلی بر روی جریان وجود ندارد.
Pin 2. OUTPUT 1
این پایه به یکی از ترمینالهای موتور A متصل می گردد . همچنین دیودها نیز جهت حفاظت به همین پایه متصل می شوند .
Pin 3. OUTPUT 2
این پین به ترمینال دیگر موتور A متصل شده و دیودها نیز مانند نقشه به آن متصل می گردند.
Pin 4. SUPPLY VOLTAGE (VS)
به پایه باید ولتاژ مورد نظر خود جهت اعمال به موتورها را متصل نمایید. این ولتاژ با توجه به موتورهای مورد استفاده شما حداکثر تا 46 ولت می تواند افزایش یابد. به برای ساخت رباتهای کوچک به طور معمول بین 6 تا 12 ولت است.
Pin 5. INPUT 1 TTL Compatible Inputs 1 to drive Motor A.
این پایه باید به صفر یا پنج ولت متصل گردد که همراه با پین 7 می توانند جهت گردش موتور را مشخص نمایند.
Pin 6. ENABLE A TTL Compatible Enable Input for Motor A.
این پایه جهت روشن و خاموش کردن موتور A و در بیشتر مواقع جهت اعمل فرکانس PWM به موتور استفاده می گردد. پنج ولت موتور را روشن و صفر موتور را خاموش می کند.
Pin 7. INPUT 2 TTL Compatible Inputs 2 to drive Motor A.
این پایه باید به صفر یا پنج ولت متصل گردد که همراه با پین 5 می توانند جهت گردش موتور را مشخص نمایند.
Pin 8. GND
اتصال به خط منفی مدار GND
Pin 9. LOGIC SUPPLY VOLTAGE (VSS)
اتصال به 5 تا 7 ولت
Pin10. INPUT 3 TTL Compatible Inputs 1 to drive Motor B.
این پایه باید به صفر یا پنج ولت متصل گردد که همراه با پین 12 می توانند جهت گردش موتور B را مشخص نمایند.
Pin 11. ENABLE B TTL Compatible Enable Input for Motor B.
این پایه جهت روشن و خاموش کردن موتور B و در بیشتر مواقع جهت اعمل فرکانس PWM به موتور استفاده می گردد. پنج ولت موتور را روشن و صفر موتور را خاموش می کند.
Pin 12. INPUT 4 TTL Compatible Inputs 2 to drive Motor B.
این پایه باید به صفر یا پنج ولت متصل گردد که همراه با پین 10 می توانند جهت گردش موتور B را مشخص نمایند.
Pin 13. OUTPUT 3
این پایه به یکی از ترمینالهای موتور B متصل می گردد . همچنین دیودها نیز جهت حفاظت به همین پایه متصل می شوند .
Pin 14. OUTPUT 4
این ترمینال دیگر موتور B متصل می گردد . همچنین دیودها نیز جهت حفاظت به همین پایه متصل می شوند
Pin 15. CURRENT SENSING B
از این پایه جهت کنترل جریان موتور B استفاده می گردد. همچنین می توان این پایه را به صورت مستقیم به خط منفی مدار GND اتصال داد که در این صورت کنترلی بر روی جریان وجود ندارد.
91