تارا فایل

پاورپوینت فیزیولوژی گیاهان زراعی


فیزیولوژی گیاهان زراعی

پیشگفتار
مقدمه
فصل اول-سلول
فصل دوم- مواد تشکیل دهنده سلولها
فصل سوم – آب ، یکی از اجزای تشکیل دهنده گیاه
فصل چهارم –انتقال
فصل پنجم – انتقال ترکیبات آلی
فصل ششم – فتوسنتز

فصل هفتم- رشد و نمو
فصل هشتم – فیزیولوژی بذر
فصل نهم مواد تنظیم کننده رشد گیاهان
فصل دهم آشنایی با چند گیاه زراعی
خلاصه کتاب
منابع

فصل اول : سلول گیاهی
مقدمه
– اندامهای گیاهی از گروهی از یاخته ها و بافتهای تخصص یافته تشکیل شده اند که وظیفه حمایت ، حفاظت ، انتقال مواد ، ذخیره، متابولیسم و تولید مثل را در گیاه به عهده دارند. در گیاهان یکساله و درختچه ها ،پیکره گیاه بر اثر تقسیم ،رشد و نمو سلولهای مریستمی که در نوک ساقه ها و ریشه ها قرار دارند ایجاد می شود از سلولهای مریستمی بافتهای اولیه به وجود می آید مانند بشره ، عناصر آوندی ، مغز.

در گیاهان چند ساله بافتهای ثانویه از طریق فعالیت یک لایه زاینده بوجود می آید از این لایه زاینده سلولهای آوند آبکشی و آوند چوبی ثانویه و سلولهای دیگر تولید می شوند که بواسطه رشد ثانویه، قطر ساقه و ریشه افزایش می یابد. در یک سلول گیاهی ، یک بخش سلولی به نام پروتوپلاسم با دیواره سلولی اولیه احاطه می شود . پروتوپلاسم شامل دو قسمت هسته و سیتو پلاسم می باشد.

سیتوپلاسم شامل مجموعه ای از اندامک ها: میتوکندری،اجسام گلژی،پلاستیدها میکروبادی،لیزوزوم ،واکوئل ،ریبوزوم،شبکه آندو پلاسمی ،میکروتوبول،میکروفیلامنت، قطرات چربی، پروتئینی و دانه های نشاسته می باشد . سیتوپلاسمی که در خارج و پیرامون اندامک ها را اشغال کرده است سیتوسل نام دارد، که شامل پروتئین ها ، اسید های آمینه ، ساکارید ها ، اسید های آلی و یونهای معدنی و ذرات سیتو پلاسمی می باشد . در شکل 1-1 سلول گیاهی و اجزای آن را مشاهده می نمایید.

سلول به عنوان یک واحد ساختمانی اولین بار در سال 1665 توسط رابرت هوک انگلیسی در فطعات چوب پنبه (پوست مرده درخت) دیده شد.

شکل 1-1: سلول گیاهی و اجزای سلول

غشا سلول (cell membran)
تمامی سلولها به وسیله یک غشا که نقش مرز بیرونی را داشته و باعث جدا نمودن سیتوپلاسم از محیط خارج می شود ، احاطه شده اند. غشا باعث می شود سلول ضمن اینکه مواد خاصی را جذب و نگهداری می کند ، برخی مواد دیگر را دفع می کند انواع مختلفی از پروتئینهای ناقل در غشا پلاسمایی قرار دارند که باعث ورود و خروج انتخابی سلولها در سراسر غشایی پلاسمایی می شوند. ساختمان مولکولی تمام غشاهای بیولوژیکی یکسان است . غشاها دارای دو لایه فسفولیپیدی هستند که در میان آنها پروتئینها قرار دارند ( شکل 1-2).

ترکیب توام فسفو لیپید ها و پروتئین ها که خصوصیات آن از یک غشا به غشا دیگر فرق می کند ، تعیین کننده خصوصیات منحصر به فرد هر غشا است

شکل 1-2: غشاء سلولی

فسفو لیپید هم خاصیت آبدوستی[1] و هم خاصیت آب گریزی[2] دارند.زنجیره های غیر قطبی هیدروکربن های اسیدهای چرب ناحیه ای را بوجود می آورند که دافع آب بوده و آب گریز می باشد . بخش های قطبی این مولکولهابا مولکولها ی قطبی آب برخورد پیدا می کنند.
شکل 1-3: ساختار شیمیایی فسفولیپید

براساس مطالعات انجام شده در مورد ترکیب و تشکیلات ساختمانی غشاها مدلی به وسیله سینگر[1] و نیکلسون[2] در 1972 ارائه شد. این مدل موزائیک مایع یا موزائیک پروتئین لیپید مایع نام دارد( شکل 1-4).
شکل 1-4: تشریح ساختمان و تشکیلات غشایی

شبکه آندوپلاسمی Endoplasmic Reticulum
دارای جداری نازک ولی نسبتاٌ فشرده با محتویات داخلی به صورت رشته های یکنواختی است که تراکم آن از سیتوپلاسم کمتر است . سلولهاشبکه پیچیده ای از غشاهای داخلی دارندکه به آنها شبکه آندوپلاسمی گویند این غشاها لوله هایی به نام سیسترنارا تشکیل می دهند.
این شبکه باغشای بیرونی هسته مرتبط است . دو نوع شبکه آندوپلاسمی به نامهای شبکه آندوپلاسمی صافو ناصافوجود دارد (شکل 1-5) .
شکل 1-5: شبکه آندوپلاسمی صاف و ناصاف

دستگاه گلژی (دیکتیوزومها) Golgi
دستگاه گلژی واژه ای است که برای تمام اجسام گلژی یا دیکتیوزومهای سلول به کار می رود (شکل 1-6).
گروهی از کیسه های پهن و تاحدی گرد به تشکیل شده و به وسیله لوله های منشعبی که از شبکه آندو پلاسمی غشا می گیرند احاطه می شوند و مستقیما به آنها وصل نمی باشد . کیسه ها در گروه های 3 تا 8 تایی هستند و در موجودات ساده ترممکن است تا 30 عدد یابیشتر یافت شود مولکولهای پیچیده هیدرات کربن درون دستگاه گلژی ساخته شده و در داخل وزیکولهای کوچک انباشته می شوند .
شکل 1-6:ساختمان دستگاه گلژی

پلاستها
مجموعه پلاستها را پلاستیدوم می گویند ویژه سلولهای گیاهی است در سلولهایی که به رشد نهایی خود رسیده اند پلاستها اشکال متفاوت دارند و مواد مختلف در خود ذخیره می کنند . پلاستها را برحسب مواد محتوی آنها به انواع زیر تقسیم می کنند:
1-کلروپلاست
2- آمیلوپلاست
3-کروموپلاست
4-الئوپلاست

کلروپلاست Chloroplast
دارای شکلها و اندازه های متنوعی هستند محتوی ماده کلروفیل و سبز رنگ است شکل کلی آنها عدسی مانند و تعداد آنها از یک تا 100 عدد و گاهی بیشتر در سلولهای گیاهی متفاوت است . کلروپلاست دارای مایع زمینه بی رنگ است بنام استروما[1] که حاوی آنزیم ها می باشد. اغلب فعالیتهای کلروپلاست بوسیله ژنهای هسته دیکته شده ولی هر کلروپلاست دارای یک مولکول DNA حلقوی می باشد که قادر است برخی از فعالیتهای فتوسنتز ویافعالیتهای درونی دیگر را کد نماید . گرانا (جمع گرانوم[2]) که به صورت مجموعه ای از صفحات سکه مانند دو غشایی بنام تیلاکوئید است که در استروما معلق می باشند(شکل 1-7). غشاهای تیلاکوئید دارای کلروفیل سبز و دیگر رنگدانه ها می باشند. در فتوسنتزگیاهان سبز آب و دی اکسید کربن به کمک انرژی نور خورشید به مواد غذایی ساده تبدیل می شوند.
شکل 1-7: کلروپلاست و اجزاء آن

آمیلو پلاست
آمیلوپلاستها محتوی نشاسته اند خاص بافت پارا نشیم ذخیره ای است و در قسمتهای عمقی اندام ها وجود دارد. منشا آنها، لکوپلاستها هستند.

اولئو پلاست نوع دیگری از لکو پلاست ها می باشند که سنتزچربی را بعهده دارد.
کرومو پلاست
کروموپلاستها عبارتند از پلاستهایی که مواد رنگین غیراز کلروفیل دارند. غالبا از لکووپلاستها بوجود می آیند و رنگیزه های زرد یا قرمز در آنها انباشته می شود. کروموپلاستها به واسطه داشتن رنگدانه های کاروتنوئید به رنگهای زرد،نارنجی یا قرمز هستند . مواد کاروتنوئیدی در بسیاری از گیاهان وجود دارند مثلا در گوجه فرنگی لیکوپن ، درگلبرگهای زرد مخصوصا درآلاله گزانتین و در هویج کاروتن وجود دارد
شکل 1-8: انواع پلاستها و نحوه تبدیل پلاستید اولیه به پلاستها

هسته Nucleus
هسته در سلولهای جوان مریستمی معمولا کروی و در سلولهای طویل به شکل استوانه است در سلولهای مسن که واکوئلی بزرگ دارند و سیتوپلاسم و هسته آنها به طرف غشا فشرده شده ، تقریبا عدسی شکل است. غشا هسته از دو لایه که یکی متعلق به هسته و دیگری یک حالت کشیدگی شبکه آندوپلاسمی است تشکیل شده است. درون هسته رشته های کروماتین وجود دارد هنگامی که هسته تقسیم می شود رشته های کروماتین کوتاهتر و ضخیمتر شده و درچنین حالتی به آنها کروموزوم گفته می شود (شکل 1-9).
شکل 1-9: ساختمان هسته

واکوئل(Vacuole)
واکوئل ها اعضای برجسته سلول گیاهی هستند و به وسیله غشایی به نام تونوپلاست اجاطه می شوند.
واکوئل حاوی یونهای معدنی ،اسیدهای آلی ، قند ، آنزیم ها و متابولیتهای ثانویه متنوعی است که اغلب در سیستم دفاعی گیاه نقش دارند. تجمع املاح محلول در واکوئل ، فشار اسمزی لازم برای جذب آب بوسیله واکوئل را که برای رشد سلول گیاه ضروری می باشد تامین می کند.
شکل 1-10: ساختمان واکوئل

میتوکندری (Mitochondria)
این اندامک بوسیله غشا دو لایه ای (یک غشا خارجی و یک غشا داخلی )از سیتوسل جدا می شوند . میتوکندری ها محل تنفس سلولی و فرایند هایی هستند که انرژی آزادشده از متابولیسم قند را برای ساختن ATP از ADP و فسفات غیر آلی به کار می گیرد . تمام آنها دارای غشا خارجی صاف و غشا داخلی بسیار ناصاف می باشند (شکل 1-11).
پوشش غشا داخلی میتوکندری ، کریستا نام دارد. قسمتی که بوسیله غشای داخلی میتوکندری احاطه شده ،ماتریکس نامیده می شود و شامل آنزیم های مسیر متابولیسم واسطه ای به نام چرخه کربن هستند .
شکل1-11: ساختمان داخلی میتوکندری

ریبوزوم ها ( Ribosome)
ریبوزوم درون هسته یک قسمت کروی شکل به نام هستک وجود دارد ،که محل ساخت ریبوزوم ها است . هستک شامل بخشهایی از یک یا بیش از یک کروموزم است که ژنهای RNA ریبوزومی ( rRNA ) به صورت خوشه ای در آن قرار گرفته و تحت عنوان سازمان دهنده هستک معروفند . یک سلول معمولی در هر هسته دارای یک یا بیش از یک هستک است . هر ریبوزوم از یک جز کوچک و یک جز بزرگ ساخته شده و هر جز آن مجموعه ای از دانه های RNA و پروتئینهای ویژه است . این دو جز جداگانه از منفذ هسته خارج می شوند و سپس در سیتوپلاسم به هم متصل شده و یک ریبوزوم کامل را تشکیل می دهند. ریبوزوم ها محل ساخت پروتئین ها هستند .
شکل 1-12: پلیمریزاسیون اسیدهای آمینه برای تشکیل زنجیره طویل پلی پپتید

اجسام ریز (میکروبادی) Microbody
میکروبادیها حجره هایی اند که به وسیله یک غشا به هم وصل می شوند و در مسیر متابولیکی خاصی نقش ایفا می کند . پراکسیزومها اندامکهای کروی شکل خاصی هستند که در واکنشهای اکسایش تخصص یافته اند کاتالاز ، یک آنزیم اکسید کننده است. نوع دیگر اجسام ریز، گلی اکسیزوم می باشد که در دانه های ذخیره کننده روغن وجود دارد .

گلی اکسیزوم ها دارای آنزیم های چرخه گلی اگزالات هستند که در تبدیل اسید چرب ذخیره ای به قند ها کمک می کنند و این قند می تواند برای تامین انرژی جهت رشد در سراسر گیاه جوان جابجا شود.

دیواره سلول Cell Wall
این دیواره حفاظت و استحکام سلول گیاهی را بدون اینکه مانع از تراوش آب و یونها از محیط به درون غشای پلاسمایی شود را بر عهده دارد . در گذشته دیواره سلول را غیر فعال می دانستند که وظیفه اش حفاظت از سیتوپلاسم و مواد هسته ای سلول بود اما امروزه روشن شده که دیواره سلولی مخصوصا دیواره سلولی اولیه ، اندامکی است که از نظر متابولیکی فعال است .

ضخامت دیواره سلولی بر حسب نوع بافت متفاوت می باشد ، مثلا در بافت مریستمی بسیار نازک و در بافتهای مقاوم مانند اسکلرانشیم بسیار ضخیم بوده ، تقریبا تمام فضای داخلی سلول را پر می کند. غشا اسکلتی ممکن است به طرف داخل سلول چین خوردگی پیدا کند ، یا با ایجاد زوائدی به داخل حفره سلولی نفوذ کند ،مانند سلولهای مزوفیل برگ کاج.

دیواره های سلولی اولیه سلولهای مریستمی قابل انعطاف و انبساطند همراه با بلوغ و تمایز سلول و تغییرات آن ،یک دیواره ثانویه روی دیواره سلولی اولیه یا در داخل آن قرار می گیرد و انبساط بیشتر سلول متوقف می شود.
شکل 1-13: نمایش شماتیک دیواره سلولی در گیاهان

سلولز (Cellulos)
یک جز اصلی سازنده دیواره سلولی است . علاوه بر این پلی ساکاریدهای پکتیکی وهمی سلولزها در دیواره موجود می باشندو همچنین یک بخش پروتئینی نیز در ساختمان دیواره سلولی اولیه مشخص شده است . پس دیواره سلولی اولیه مجموعه ای از مولکولهای بزرگ (پلی ساکاریدها و پروتئینها) می باشد که سنتز و قرار گرفتن آنها در دیواره در ارتباط نزدیک با فعالیتهای سایر بخشهای سلول می باشد.

دیواره سلولی ثانویه معمولا پس از رشد کامل سلول به وجود می آید .دیواره سلولی ثانویه دارای سلولز بیشتری نسبت به دیواره اولیه است دیواره های ثانویه سلول معمولا پکتین کمتری دارند بنابراین آب کمتری در خود نگه داشته و نسبت به دیواره های اولیه متراکمتر هستند یکی از اجزای مهم دیواره های سلولی ثانویه لیگنین است که 15 تا35 % وزن خشک بافتهای چربی را تشکیل می دهد و نقش مهمی را در ایجا د سختی دیواره ایفا می کند.
شکل 1-14: ساختمان شیمیایی سلولز در دیواره سلولی

ارتباط سلولهای گیاهی
سلولهای بافتهای گیاهی که به وسیله جدار اسکلتی به هم پیوسته اند از طریق همین جدار نیز باهم ارتباط دارند. غشا سلولزی و تیغه میانی نسبت به آب و مواد محلول نف پذیرند. این قابلیت نفوذ در تبادل مواد بین سلولها بسیار موثر است . غشای پلاسمایی از یک سلول به سلول مجاور از طریق پلاسمودسماتا مرتبط می شوند (شکل 1-15)
از جزئیات دیگر ساختمانی دیواره بالغ سلولی حفره هایی به نام پیت را می توان نام برد. این حفره ها فرو رفتگیهای کوچکی در دیواره سلولی ثانویه هستند که با حفره های مشابه در دیواره های سلولی ثانویه سلول مجاور ، در یک ردیف قرار می گیرند.
آب و مواد محلول از طریق این حفره ها بین سلولهای مجاور مبادله می شود (شکل 1-16) .
شکل1-15: ساختمان پلاسمودسماتا

شکل1-16: ارتباط سلولها توسط پلاسمودسماتا

مواد تشکیل دهنده سلولها
فصل دوم

مقدمه
متابولیسم شامل دو دسته فعالیت می باشد یک سری واکنش هایی که در آن مواد ذخیره ای سلولها به مولکولهای کوچک و فعال تجزیه می شوند و دوم واکنشهایی که به بیوسنتز مواد سلولی جدید منتهی می گردند . نوع اول را غالبا واکنشهای کاتابولیک و نوع دوم را واکنشهای آنابولیک می نامند. همه این واکنشهای متابولیکی توسط پروتئین های مخصوصی کاتالیزوری می شوند که آنزیم نام دارند.
یک سلول مریستمی در گیاه ،قادر به انجام تعداد زیادی از واکنشهای آنزیمی می باشد . بسیاری از واکنشهای متابولیکی در داخل سلول به طور همزمان انجام می شوند بنابراین تشکیلات ساختمانی سازمان یافته ای در سلول وجود دارد.

مولکولهای آلی در گیاهان
مولکولهای آلی در گیاهان از موادی مانند : پروتئین ، اسیدها ی آمینه ، نوکلئوتیدها، لیپیدها ، هیدرات کربن تشکیل شده است.
پروتئین ها از تعداد زیادی مولکولهای اسید آمینه تشکیل شده اند در حالیکه نوکلئوتیدها اسیدهای نوکلئیک را می سازند و هیدراتهای کربن ممکن است به صورت مونومر (مونوساکارید)یا پلی مر(پلی ساکارید)وجود داشته باشند.
واحد های مونومری به آسانی متابولیزه می شوند و در داخل گیاه به نقاطی منتقل می شوند و در آن جا بر اثر واکنشهای متابولیکی به پلی مرهای ساختمانی( مثل : سلولز ، پروتئین)و یا به پلی مرهای ذخیره ای (مثلا نشاسته )و یا به آنزیم (پروتئین ها) تبدیل می شوند یا در داخل سلولها به مواد ساختمانی سلولها ، بافتها و اندامها تبدیل می شوند.

مولکولهای آلی در گیاهان
همه اسید ها ی آمینه حاوی ازت هستند و برخی از آنها حاوی گوگرد نیز می باشند.
نوکلئوتیدها علاوه بر کربن ،هیدروژن و اکسیژن دارای ازت و فسفر نیز هستند برخی از لیپیدها تنها از کربن هیدروژن و اکسیژن تشکیل شده اند ولی در برخی دیگر ازت و فسفرنیز یافت می شود.
سنتز مولکولهای پلی مر عبارت است از تشکیل پیوند های شیمیایی بین اتم های کربن و یا بین اتمهای کربن ، اکسیژن و ازت . چنین مولکولهایی نسبتا باثباتند و پیوندهای شیمیایی بین اتمهای تشکیل دهنده آنها بوسیله فعالیتهای آنزیمی و یا بوسیله مواد شیمیایی مخصوصی (درجه حرارت زیاد،فشار ،شرایط اسیدی یا قلیایی)شکسته می شوند.

پروتئین ها Proteins
ماکرو مولکولهای بزرگی هستند که وزن مولکولی آنها بین چندین هزار تا چندین میلیون است . در پروتئین ها عموما اسید آمینه های مختلف یافت می شود. ساختمان عمومی اسیدهای آمینه حاوی یک گروه آمینی ( -NH2 ) است که در مجاورت یک گروه کربوکسیل قرار دارد. به این ساختمان گروههای جانبی مختلفی ( R ) متصل می شوند.
شکل2-1: ساختار یک اسید آمینه

پروتئین ها از مونومرهای اسیدهای آمینه همراه باخارج شدن یک مولکول آب از دو اسید آمینه مجاور به هم تشکیل می شوند . پیوند تشکیل شده پیوند پپتید[1] نامیده می شود (شکل 2-2).

شکل2-2: فعل و انفعال دو اسید
آمینه برای تشکیل یک مولکول دی پپتید

نقش پروتئین ها در گیاهان
برخی از پروتئینها در اندامهای ذخیره ای مانند آندوسپرم و لپه ها به مقادیر فراوانی وجود دارند. پروتئین های ساده از قبیل : آلبومین ها ، گلوبولین ها ، زئین نمونه هایی از پروتئین های ذخیره ای به شمار می روند.
در مرحله جوانه زدن دانه،پروتئین های ذخیره ای بوسیله آنزیم ها به پپتیدهای کوچک و اسیدهای آمینه تجربه می شوند و جنین گیاهی را در مرحله اولیه رشد و نمو تغذیه می کنند .
برخی از پروتئینها به عنوان پروتئین های ساختمانی یا محافظ عمل می کنند معروفترین آنها در جانوران پر و پشم هستند ولی پروتئین های ساختمانی در کوتیکول ها و برخی فیبرهای گیاهی نیز وجود دارند.
پروتئین های دیگر مانند:گلیکو پروتئین ها (پروتئین به علاوه هیدرات کربن) و لیپو پروتئینها (پروتئین به علاوه لیپیدها) در سطوح غشایی یعنی جایی که در تشکیلات ساختمانی و عمل غشاها شرکت دارند یافت می شوند.

آنزیم (Enzyme)
همه آنزیم ها پروتئین هستند و در واکنشهای مربوط به پروتئینها عمل می کنند فعالیت آنزیم بر اثر عواملی مانند درجه حرارت ، غلظت یون هیدروژن ،فلزات سنگین و غیره تغییر می کند .آنزیم ها را بنیانگذاران حیات نام نهاده اند.یک سلول معمولی چندین هزارآنزیم مختلف دارد که طیف گسترده ای از واکنشها را انجام می دهند. مهمترین ویژگی آنزیم ها، اختصاصاتی است که امکان تمایز بین مولکولهای بسیار مشابه را به آنها می دهد.
آنزیم ها نقش منحصر به فردی در افزایش شدید سرعت واکنشها داشته و سرعت واکنشها ی آنزیمی به مراتب بیش از سایر کاتا لیزورهای معمولی است برخلاف اکثر کاتالیزورهای دیگر ، آنزیم در فشار اتمسفری و درجه حرارت هوای معمولی و معمولاٌ در دامنه باریکی از اسیدیته(البته موارد استثنایی وجود دارد)عمل می کنند .تعدادمعدودی از آنزیم ها قادرند تحت شرایط بسیار سخت به ایفای نقش خود ادامه دهند.

اسیدهای نوکلئیک
دونوع اسید هسته ای درسلول ها وجود دارد که شامل اسید دی اکسی ریبونوکلئیک ( DNA ) و اسید ریبونوکلئیک (RNA ) می باشند. اسیدهای نوکلئیک از تعداد زیادی مونومرهای نوکلئوتید تشکیل شده اند که هر یک از این مونومرها به نوبه خود شامل یک باز ازت دار ، قند و اسید فسفریک می باشد . دو نوع بازهای ازت دار وجود دارند: پورین ها[1] و پیریمیدین ها[2]. DNA و RNA هردو حاوی دو پورین آدنین[3] و گوانین[4] و یک پیریمیدین ، سیتوزین می باشند . پیریمیدین تیمین[5] در DNA وجود دارد، ولی RNA حاوی پیریمیدین دیگری به نام یوراسیل[6] است. دو اسید نوکلئیک مذکور از نظر نوع قند پنتوز با یکدیگر تفاوت دارند.

اسیدهای نوکلئیک
DNA حاوی دی اکسی ریبوز و RNA حاوی ریبوز می باشد .
DNA و RNA هر دو حاوی اسید فسفریک هستند. بازهای ازت دار،قند و اسید فسفریک در یک زنجیره طولی همانطور که در شکل 2-3 نشان داده شده است قرارمی گیرند.
شکل2-3: جفت شدن بازهای مکمل
در دو رشته DNA

اسید دی اکسی ریبونوکلئیک ( DNA )
همان طور که در شکل 2-3 مشاهده می نمایید DNA از پازهای آلی آدنین و گوانین ، سیتوزین و تیمین و نیز دی اکسی ریبوزو اسید فسفریک تشکیل شده است . ساختمان پورین ها و پیریمیدین ها در شکل 2-4 و 2-5 نمایش داده شده است.
در سال 1963 واتسون و کریک معلوم کردند که ساختمان مولکول DNA دو رشته ای است (به شکل 2-3 رجوع شود) . آنها خاطر نشان کردند که پورین ها وپیریمیدین ها به علت شکل و اندازه ای که دارند در دو رشته DNA به صورت جفت شده قرار می گیرند بطوری که تیمین (T )با آدنین (A ) و سیتوزین(C ) با گوانین ( G) جفت می شود.

اسید دی اکسی ریبونوکلئیک (DNA)
براساس تحقیقات قبلی بر روی ساختمان حلقه ای پروتئین ها( که ساختمانی مارپیچی شکل است ) و نیز از نتیجه مطالعات مشابهی که قبلا ویلکینز بر روی DNA خالص کرده بود ، واتسون و کریک عقیده داشتند کهDNA دو رشته ای طوری می پیچد، این دو رشته با پیوند های هیدروژنی بین جفت بازهای ازت دار به یکدیگر متصل می شوند.

اسید ریبو نوکلئیک (RNA )
مولکول RNA یک زنجیره طویل تک رشته ای پلی نوکلئوتید است و از تعدادی نوکلئوتید ساخته می شود . شواهدی وجود دارد که قسمت هایی از مولکول پلی نوکلئوتیدها ممکن است به طریقی تا شوند که به صورت قطعات دورشته ای همراه با بازهای مکمل در آیند(همانطور که در مولکولDNA اشاره شد) . ترکیب باز ازت دار RNA با DNA متفاوت است بدین معنی که یوراسیل (U) جایگزین تیمین (T) می شود و همچنین در قند ریبوز پنتوز به جای دی اکسی ریبوز قرارمی گیرد. نحوه پراکندگی RNA در داخل سلول نیز با DNA تفاوت دارد مقدار کمی RNA در هسته یافت می شود ولی مقدار بیشتری از آن را در سیتوپلاسم می توان یافت.

آدنوزین تری فسفات(ATP )
آدنوزین تری فسفات همانطورکه در شکل 2-6 نمایش داده شده است نوکلئوتیدی است که از آدنین ،ریبوز و اسید فسفریک تشکیل شده است . بعلاوه دو گروه فسفات اضافی به گروه فسفات آدنوزین و مونوفسفات متصل شده است.
ATP یک جز تشکیل دهنده و مهم سلول است و در واکنشهای آنابولیک و کاتا بولیک شرکت می کند .
شکل2-6: ساختمان شماتیک ATP

شکل 2-7: ریزساختمان ATP

ئیدرات های کربن
تفاوت ئیدرات های کربن با سایر مواد تشکیل دهنده گیاه در این است که این مواد فقط حاوی کربن ، هیدروژن و اکسیژن هستند. با این حال بسیاری از آنها بصورت مشتقات فسفره و تعداد کمی نیز حاوی ازت می باشند . ئیدارت های کربنی که در واکنش های متابولیکی شرکت دارند عموما بصورت مونو ساکاریدهایی نظیر گلوکز ، فروکتوز و آرابینوز می باشند در حالی که مواد ذخیره ای و ئیدرات های کربن ساختمانی بصورت پلی ساکارید ها وجود دارند.

ئیدرات های کربن
یک تفاوت عمده که گیاهان و حیوانات را از هم متمایز می کند وجود دیواره اسکلتی سخت در سلولهای گیاهان است که در اصل از سلولز تشکیل می شود. پلی مر سلولز حاوی چندین هزار مونومر گلوکز است که در تشکیل میکروفیبریل های طویلی که ساختمان دیواره سلولی را محکم می کنند دخالت دارد. گیاهان همچنین حاوی نشاسته یعنی پلی مر دیگری از گلوکز هستند مولکول نشاسته حاوی چندین هزار مولکول گلوکز است که مانند سلولز ساختمان فیبری ندارد.

مونوساکاریدها
مونومر ئیدرات های کربن مونوساکارید نامیده می شود. ساده ترین مونوساکارید گلیسر آلدئید(قندسه کربنی تریوز)می باشد.
گلوکز،گالاکتوز، مانوزو فروکتوز، ایزومر یکدیگرند زیرا دارای فرمول شیمیائی یکسانی هستند ولی خواص بیولوژیکی آنها متفاوت است.
دومونوساکارید بسیار مهم درسلولها ریبوز و دی اکسی ریبوز (قند های 5 کربنی پنتوزها)هستند شکل 2-8،که اجزا ساختمانی اسیدهای نوکلئیک بشمار می روند .
شکل 2-8: ساختمان ریبوز و دئوکسی ریبوز(اقتباس از کلاگ و کومینگ1997)

شکل2-9: ساختمان مونوسارید،دی ساکارید و پلی ساکارید

دی ساکاریدها
یک دی ساکارید هنگامی تشکیل می شود که دو مونو ساکارید از طریق پیوند گلیکوزیدی با از دست دادن یک مولکول آب از گروههای هیدروکسیل مونوساکاریدها به یکدیگر بپیوندند ساکارز از گلوکز و فروکتوز تشکیل شده است (شکل 2-10). این ماده از دی ساکاریدهایی است که پراکندگی وسیعی در گیاهان دارد و یکی از تولیدات اصلی فتوسنتزاست .
در گیاهانی مانند نیشکر وچغندر قند مقدار ساکارز ممکن است به غلظتهای 15 تا20 درصد برسد. در بسیاری از گیاهان نشاسته جزء ئیدراتهای کربن ذخیره ای اصلی محسوب می شود. ساکارز همچنین فرم عمده و مهم در نقل و انتقال ئیدراتهای کربن در گیاهان است .
شکل2-10: ساختمان شیمیایی ساکارز

پلی ساکاریدها (ماکرومولکولها)
با اضافه و متصل شدن مونوساکاریدها به یکدیگر (در ضمن باحذف مولکولهای آب) زنجیرهای طویلی از ئیدراتهای کربن تشکیل می شود که پلی ساکاریدها نام دارند. پلی ساکاریدها ممکن است از یک نوع مونوساکارید تشکیل شده باشند و یا حاوی چندین نوع مونوساکارید مختلف باشند. دونمونه از پلی ساکاریدهایی که به مقدار زیاد در گیاهان وجود دارند یعنی نشاسته و سلولز از مولکولهای گلوکز تشکیل می شوند. به هر حال دوفرم گلوکز در مولکول این دو ماده وجود دارند و نتیجتا دو ماکرومولکول کاملا مختلف حاصل می شود.

لیپیدها Lipid
لیپیدها گروهی از مولکولهای ناهمگن هستند که فقط واحدهای مونومری مانند آنچه که در مورد پروتئین ها ، نوکلئوتیدها و ئیدرات های کربن ذکر شد، می باشند. لیپیدها حاوی اتمهای کربن ، اکسیژن و هیدروژن و بسیاری نیز حاوی ازت ، فسفر و گوگرد هستند.
چربیها و مولکولهای چربی مانند عموما با عنوان" لیپیدها" و براساس خواص حلالیتشان یعنی براساس غیر محلول بودن آنها در آب و یا محلول بودن آنها در موادی مانند کلروفرم ، بنزن، اتر ، نفت و حلالهای مشابه طبقه بندی می شوند. چربیها را گاهی چربیهای خنثی می نامند که بعنوان مواد غذایی ذخیره ای خصوصا در دانه ها وجود دارند در حالی که مواد چربی مانند همچون فسفولیپیدها و گلیکولیپیدها اجزای ساختمانی همه غشاهای سلولی هستند. مواد مومی کوتیکولی را نیز لیپیدها تشکیل می دهند ، اما از نظر ترکیبات شیمیایی با چربیها کاملا تفاوت دارند.

لیپیدها Lipid
اسیدهای چرب دارای فرمول کلی CH3 (CH2)X COOH هستند که در آن x معمولا یک عدد زوج است.مثلا اسید پالمیتیک[1] که یک اسید چرب اشباع شده است دارای فرمول CH3 (CH2)14 COOH می باشد. گلیسرول و اسیدهای چرب با یکدیگر ترکیب می شوند و در نتیجه یک تری گلیسرید تشکیل و در ضمن سه مولکول آ ب حذف می شود. لزومی ندارد که هر سه گروه هیدروکسیل گلیسرول از طریق پیوند استر به اسیدهاس چرب اتصال داشته باشند. بدین ترتیب ، بسیاری از چربیها مونو و دی گلیسرید هستند تا تری گلیسرید . اسیدهای چرب در یک مولکول چربی ممکن است یکسان باشند ، اما در اغلب موادر متفاوتند . معمولا چربیهایی که بصورت طبیعی وجود دارند مخلوطهای کمپلکس از اسیدهای چرب اشباع شده و اشباع نشده هستند که طول زنجیرهای آنها متفاوت است.
فسفو لیپیدها گروه مهم دیگری از لیپیدها هستند .

شکل 2-11: ساختمان اسیدچرب اشباع و غیر اشباع

شکل2-12: ساختمان تری گلیسیرید

آب ، یکی از اجزای تشکیل دهنده گیاه
فصل سوم

مقدمه
در بین همه موادی که برای ادامه حیات گیاهان ضروری هستند، آب از نظر مقدار بیش از سایر مواد مورد احتیاج گیاهان است. آب در سراسر پیکره گیاه از آبی که در خاک اطراف ریشه هاست تا بخار آ ب موجود در اطاقک زیر روزنه های هوایی برگها ، وجود دارد. سطح تبخیر سلولهای مزوفیل برگ نشانگر قطع ارتباط و پیوستگی آب داخل گیاه و بخار آب موجود در هوا است . هر یک از سلولهای فعال و در حال رشد گیاهان است . سرعت رشد گیاهان عالی نسبت به کمبود آب در خاک خیلی سریعترعکس العمل نشان می دهد. مقدار آب قابل استفاده برای ریشه گیاهان و نیز مقدار بخار آب موجود در هوا ، از مهمترین عوامل اکولوژیکی هستند که در توزیع و پراکندگی گونه های مختلف گیاهان عالی در سطح کره زمین تاثیر دارند.

مقدار آب اکثر سلولها و بافتهای گیاهان عالی بیش از 80 درصد وزن تر آنها است. مقدار آب موجود در برخی سلولهای درحال رشد ممکن است تا حدود 90 درصد و بیشتر نیز برسد ولی در دانه های در حال خواب ( دورمانت) و نیز شکوفه ، مقدار آب ممکن است 10 درصد و یا کمتر باشد.
درفصل حاضر خواص فیزیکی و شیمیائی آب در گیاهان بحث خواهد شد و نیز مفهوم پتانسیل آب نیز توضیح داده خواهد شد . فیزیولوژی روابط آب- گیاه شامل مباحث جذب ، انتقال و خروج آب از گیاهان می باشد.

وظایف و اعمال آب در گیاهان
اهمیت آب در حیات گیاهان عالی را با شمردن برخی از وظایف و تاثیرهای آن در گیاهان می توان بخوبی نشان داد:
1- آب جز عمده و تشکیل دهنده پروتوپلاسم است.
2- آب حلالی است که عناصر غذایی معدنی در آن محلول می شود و از طریق آن وارد گیاه می شوند. همچنین ، آب حلالی است که به وسیله آن مواد غذایی معدنی از یک محل در داخل یک سلول به محل دیگر در همان سلول و نیز از یک سلول به سلول دیگر و از یک بافت به بافت دیگر و بالاخره از یک اندام به اندام دیگر منتقل می شوند.

3- آب محیطی است که در آن بسیاری واکنشهای متابولیکی انجام می شوند.
4- آب یک ماده فعل و انفعال کننده در بسیاری از
واکنشهای متابولیکی ( مانند برخی از واکنشهای
چرخه کربس است.

7- درمرحله فتوسنتز ، اتم هیدروژن مولکول آب وارد ترکیبات آلی می شود و اتمهای اکسیژن مولکول آب به صورت o2 آزاد می شوند.
6- آب سبب تورم و آماس سلولهای در حال رشد می شود و بدین ترتیب شکل و ساختمان آنها را تامین می کند . در حقیقت آب را می توان به عنوان ماده ای که سبب حمایت مکانیکی و تورم و یا چروکیدن سلولهای محافظ روزنه های هوایی و نیز تاشدن و جمع شدن برگچه ها در برخی از گیاهان و باز یا بسته شدن گلهای برخی گیاهان در ساعات مختلف روز یا شب و همچنین حساسیت برگچه های برخی گیاهان نسبت به تماس و لمس کردن آنها ، مانند گیاه حساس ( میموزا پودیکا)
8- مرحله رشد طولی سلولها بستگی به جذب آب دارد.
9- آب یک محصول متابولیکی نهایی مرحله تنفس است
10- آب بیش از هر ماده دیگری توسط گیاهان جذب و دفع ( به صورت بخار آب) می شود.

ساختمان و خواص آب
ما می توانیم این بحث را با مطالعه چگونگی ساختمان آب و خواص مهم آب شروع کنیم . این امر می تواند مبنایی برای شناخت مکانیسم های مختلف انتقال آب از خاک به گیاه و از آن طریق به اتمسفر باشد.
خاصیت قطبی بودن مولکولهای آب ، باعث به وجود آمدن جاذبه قوی بین مولکولی می گردد که پیوند هیدروژنی نامیده می شود.
مولکول آب دارای یک اتم اکسیژن است که با دو اتم هیدروژن پیوند کووالانس دارد. دو پیوند H-Oبا هم یک زاویه 105 تشکیل می دهند (شکل3-1) چون خاصیت الکترونگاتیوی اتم اکسیژن بیشتراز هیدوژن است بنابراین تمایل اکسیژن به جذب الکترونهای پیوند کووالانس ،بیشتر است . این امر باعث به وجود آمدن بار منفی جزئی در سمت اکسیژن و نیز بار مثبت جزئی در سمت هر هیدروژن می شود.

این بارهای جزئی برابرند و باعث می شوند که مولکول آب هیچ گونه بار خاصی نداشته باشد. جاذبه الکترواستاتیکی بین مولکولهای آب به عنوان پیوند هیدروژنی معروف بوده و عامل تعدادی از خواص فیزیکی غیر طبیعی آب می باشد . پیوند هیدروژنی بین مولکولهای آب باعث قوام بخشیدن به محلولهای آبی می گردد.

شکل3-1: مولکول آب

خاصیت قطبی آب ،آن را به یک حلال عالی تبدیل کرده
خواص فیزیکی آب ، آن را به عنوان یک ماده مناسب و بی نظیر ، در بستر حیات در آورده است .آب دردرجه اول یک حلال عالی است . آب در مقایسه با سایر حلالها ، مقدار بیشتر و طیف وسیعتری از مواد را در خود حل می کند . این خصوصیت ، تا حدی به کوچک بودن اندازه مولکول آب و نیز ماهیت قطبی آن(که باعث می شود آب حلال خوبی برای مواد یونی باشد) مربوط می شود. مولکولهای آب ،

اطراف یونها و مواد محلول قطبی موجود در محلول را احاطه می کنند و به طور موثر ، بارهای الکتریکی آنها را می گیرند. این عمل باعث کاهش اثر متقابل بین مواد باردار می شود و بنابراین حلالیت آنها را زیاد می کند . علاوه بر این انتهای قطبی مولکولهای آب به گروههای باردار و یا دارای بار جزئی مولکلوهای بزرگ نزدیک می شوند و تشکیل لایه هایی از آب می دهند .

پیوند هیدروژنی بین مولکولهای بزرگ و آب باعث کاهش اثر متقابل بین مولکولهای بزرگ شده و به حلالیت آنها کمک می کند.توانایی آب در تشکیل پیوندهای هیدروژنی ، باعث افزایش خصوصیات حرارتی ، پیوستگی و چسبندگی آن می شود :
پیوند قوی هیدروژنی بین مولکولهای آب باعث به وجود آمدن خصوصیات ویژه ای مانند گرمای ویژه زیاد و گرمای نهان تبخیر بالا می شود. گرمای ویژه مقدار انرژی گرمایی است که لازم است تا درجه حرارت یک ماده به مقدار معینی افزایش یابد .

وقتی درجه حرارت آب بالا می رود ، جنبش مولکولها سریعتر می شود و بنابراین انرژی بیشتری برای شکستن پیوند هیدروژنی بین مولکولهای آب لازم است . از این رو آب در مقایسه با سایر مایعات ، انرژی نسبتا بیشتری برای بالا بردن درجه حرارت خود نیاز دارد . این خصوصیت برای گیاهان حائز اهمیت است ، زیرا اثرات سوء ناشی از نوسانات احتمالی درجه حرارت را کاهش می دهد .

گرمای نهان تبخیر عبارت است از مقدار انرژی که لازم است تا درجه ثابت ، مولکولهای آب از فاز مایع جدا شده و به فاز گاز منتقل شوند ( همان فرایندی که ضمن تعرق اتفاق می افتد) . گرمای نهان تبخیر آب در 25 درجه سانتی گراد، 5/10 کیلو ژول بر مول است که بیشتر از هر مایعی می باشند . بیشتر این انرژی ، صرف شکستن پیوند هیدروژنی بین مولکولها ی آب می شود. بالابودن گرمای تبخیر آب باعث می شود که گیاهان گرم شده در اثر تابش خورشید، بتوانند از طریق تبخیر آب از سطح برگها ، خودشان را خنک کنند . تعرق ، یک عامل مهم برای تنظیم حرارت گیاهان است.

خواص فیزیکی و شیمیایی آب
آب مایع ماده ای بی رنگ ، بی بو، بی مزه و شدیدا غیر قابل تراکم و فشردگی است و دارای خواص بی مانندی است . یکی از این خواص نحوه یخ زدن آب است. آب ، هنگامی که یخ می زند منبسط می شوند، در حالی که تقریبا همه مواد دیگر به هنگام سرد شدن و یخ زدن منقبض می شوند. حجم یک قطعه یخ به وزن معین ، حدود 9 درصد بیشتر از حجم آب مایع هم وزن آن است . بنابراین ، یخ تراکم کمتری نسبت به آب مایع دارد و در نتیجه در آب به حالت شناور قرار می گیرد . این پدیده به علت آن است که مولکولهای آب تا اندازه ای متلاشی می شود و مولکولهای آب قسمتی از فضاهای خالی را اشغال می کنند.

سایر خواص بی مانند آب عبارتند از نقطه جوش زیاد و نقطه نهان تبخیر زیاد در مقایسه با سایر مواد هیدروژن دار با وزن مولکولی مشابه (مانند: متان با وزن مولکولی 16 و آمونیاک باوزن مولکولی 17 و سولفید هیدروژن با وزن مولکولی 34) دیده می شود که آب ( با وزن مولکولی 18) دارای نقطه جوش و نقطه نهان تبخیر خیلی زیاد تری نسبت به آنچه که ممکن است تنها براساس معیار وزن مولکولی آب انتظار داشت . مثلا نقطه جوش سولفید هیدروژن 62- درجه سانتی گراد و گرمای تبخیر ( مقدار کالری لازم برای تبدیل یک گرم مایع به بخار )آن
132کالری در گرم درنقطه جوش آن است.

اکنون اگر تنها براساس معیار وزن مولکولی آب قضاوت کنیم ، باید انتظارداشت که نقطه جوش و گرمای تبخیر آب از سولفید هیدروژن نیز کمتر باشد ولی آب در 100درجه سانتی گراد به جوش می آید و گرمای تبخیر آب از 540 کالری در گرم در درجه حرارت 100 سانتی گراد تا 580 کالری در گرم در درجه حرارت 25 سانتی گراد متغیر است.
نقطه جوش زیاد و نیزگرمای تبخیر زیاد آب به علت جذب مولکولهای آب به یکدیگر به واسطه پیوندهای هیدروژن است . زیرا ، برای این که مولکولهای آب از حالت مایع خارج و تبخیر شوند نه تنها باید انرژی سینتیک کافی کسب کنند بلکه باید مقدار بیشتری انرژی گرمایی برای شکستن پیوندهای هیدروژن بین مولکولهای آب نیز صرف شود.

یک نتیجه گرمای تبخیر زیاد آب ، اثر سرد کنندگی آن به هنگام تبخیر آب است. هنگامی که آب بر اثر تعرق از سطح یک برگ تبخیر می شود ، مقداری انرژی گرمایی از سطح برگ می گیرد و در نتیجه درجه حرارت برگ مقداری کاهش می یابد.
یکی دیگر از خواص بی مانند آب ، توانایی آن در جذب گرما است در حالی که درجه حرارت آن مقدار کمی افزایش می یابد . برای افزایش درجه حرارت یک گرم آب به اندازه 1 درجه سانتی گراد حرارت بیشتری نسبت به افزایش درجه حرارت یک گرم (تقریبا ) هر ماده دیگری لازم است.این مقدار گرما یعنی مقدار گرمایی که لازم است تا درجه حرارت یک گرم از یک ماده 1 درجه سانتی گراد ( دردرجه حرارت 15 درجه سانتی گراد) افزایش یابد ( یعنی از 15 درجه به 16 درجه سانتی گراد برسد) ، گرمای ویژه نامیده می شود .

گرمای ویژه آب حدود چهار مرتبه از گرمای ویژه هوا بیشتر است. گرمای ویژه زیاد آب به علت جذب قوی مولکولهای آب به یکدیگر است. مقداری از انرژی گرمایی که به آب داده می شود تا درجه حرارت آن افزایش یابد ، صرف شکستن پیوند های هیدروژن آب می شود. به این معنی که یک مقدار معین آب، قبل از آن که درجه حرارت آن به مقدار کمی افزایش یابد ، باید مقدار نسبتا زیادی گرما جذب کند. همچنین ، آب نسبت به هوا ظرفیت ذخیره بیشتری برای گرما دارد(مقداربیشتری گرما می تواند ذخیره کند).

برای ارائه یک مثال باید گفت که مقدار گرمایی که در قشر آب به ضخامت 3 متر از سطح اقیانوسها ذخیره می شود برابر مقدار گرمایی است که در کل اتمسفر که بین سطح اقیانوسها و فضای خارجی وجود دارد ، ذخیره می شود . بنابراین ، درجه حرارت آب اقیانوس خیلی آهسته تر از درجه حرارت هوا تغییر می کند زیرا قبل از آن که درجه حرارت آب اقیانوس کمی تغییر کند، لازم است که مقادیر زیادی گرما به آن اضافه و یا ازآن گرفته شود.

گرمای ویژه زیاد آب سبب می شود که درجه حرارت داخلی گیاهان نسبتا ثابت باقی بماند . هنگامی که درجه حرارت هوا تغییر و نوسان زیاد پیدا می کند، درجه حرارت داخلی گیاهان تنها به مقدار نسبتا کمی تغییر می کند .به علاوه آب سبب می شود که درجه حرارت سلولهای گیاهی به هنگام انجام واکنشهای شیمیایی گرما زا(تولید کننده گرما) در داخل آنها ثابت باقی بماند.
توانایی چسبندگی مولکولهای آب در حالت مایع به یکدیگر ، که به آن خاصیت کوهیژن] گفته می شود مبین کشش سطحی مولکولهای آب است. مولکولهای آب در سطح آب مایع با شدت بیشتری توسط مولکولهای دیگرآب در داخل مایع جذب می شوند تا توسط مولکولهایی که در هوای بالایی مایع آب وجود دارند.

بنابراین جبهه مایع- هوا به عنوان یک پوسته قابل انعطاف عمل می کند . به این خاصیت یک مایع ، کشش سطحی گفته می شود.چون مولکولهای آب توسط پیوندهای هیدروژن به یکدیگر جذب می شوند ، لذا آب دارای کشش سطحی زیادتری نسبت به اکثر مایعات است.
نه تنها مولکولهای آب توسط پیوندهای هیدروژن به یکدیگر جذب می شوند، بلکه مولکولهای آب به مولکولهای سایر مواد که دارای تعداد زیادی اتمهای اکسیژن و ازت هستند.
مانند:شیشه ، چوب ،رس ، خاک ، سلولز و پروتئین
نیز می چسبند.

این دو خاصیت (یعنی توانایی مولکولهای آب در چسبیدن به یکدیگر و نیز چسبیدن به مولکولهای برخی مواد دیگر) بستگی به توانایی مواکولهای آب در تشکیل پیوندهای هیدروژنی دارد .
کشش سطحی زیاد آب و نیز توانایی آب در چسبیدن به برخی مواد دیگر سبب عمل و حرکت آب در لوله های مویین می شود. این پدیده سبب انتشار مولکولهای آب به هنگام تماس با موادی مانند: کاغذ ، خاک و یا دیواره سلولزی سلولهای گیاهان می شود .

وجود منافذ و خلل و فرج زیاد در مواد مزبور سبب می شود که آب به طور خود بخود در داخل آنها از یک ناحیه مرطوب به طرف یک ناحیه خشک حرکت کند.
یک مثال ساده در مورد عمل مویینه آب ، بالا رفتن آب در یک لوله شیشه ای کم قطر است هنگامی که لوله مزبور در داخل آب قرار گیرد ، آب تا ارتفاع بیشتری نسبت به سطح آب ظرف در لوله صعود خواهد کرد.

پیوندهای هیدروژن بین اتمهای اکسیژن در لوله شیشه ای و مولکولهای آب در محل تماس آب با شیشه ، باعث بالا رفتن آب در لوله می شود. در همان ضمن پیوندهای هیدروژن بین مولکولهای آب سبب بالا کشیدن سایر مولکولهای آب در لوله شیشه ای می شود. نتیجتا آب در لوله بالا می رود. هنگامی که وزن ستون آب در داخل لوله برابر با نیروی کشش سطحی شود، حرکت صعود مویینه ای آب در لوله متوقف می شود.
یک خاصیت بی نظیر دیگر آب ، توانایی آن در حل کردن مقادیر زیاد از مواد مختلف نسبت به مایع های دیگر است . عمل حلالیت آب حداقل بستگی به سه نوع واکنش و تاثیر متقابل بین مولکولهای آب و مولکولها و یون های محلول دارد.

حلالیت موادی که در آب یونیزه نمی شوند(هنگامی که در آب حل شوند) و مخصوصا مواد دارای وزن مولکولی کم که حاوی اتمهای اکسیژن و ازت به فرم گروههای OH و NH2 هستند(مانند:گلوکز،فروکتوز،ساکارز،اسیدهای آمینه تجزیه نشده) بستگی به پیوندهای هیدروژنی دارد. مولکولهای مواد مزبور با مولکولهای آب پیوندهای هیدروژنی تشکیل می دهند. نوع دیگر عمل حلال ها در مورد حلالیت موادی است که یونیزه نمی شوند، حلالیت این گونه مواد در آب به علت خاصیت دوقطبی بودن مولکولهای آب است .

هریک از یون های موجود در یک محلول توسط یک قشر آب که در اطراف آن وجود دارد احاطه شده است . این قشر آب به صورت یک حوزه عایق الکتریکی عمل می کند که سبب کاهش نیروی جذب بین یون های با بارهای مخالف می شود و به این ترتیب باعث می شود که یون ها در محلول ، به صورت جدا از یکدیگر قرار گیرند. در نوع سوم عمل حلال ، مواد غیر قطبی (مانند هیدروکربن ها ) در آب حل می شوند ولی به میزان کم ، زیرا نیروی جذب کننده قوی بین مولکولهای آب و مولکولهای همه مواد دیگر وجود دارد

(نیروهای جاذبه بین مولکولهای مواد مختلف که در مجاورت نزدیک یکدیگر واقع شده اند به علت تغییرات الکترون ها نسبت به هسته اتمی است و به آن نیروهای واندروال گفته می شود).قرار دادن یک ماده غیر قطبی در آب مانند ایجاد یک سوراخ یا حفره در ساختمان آب است و به این ترتیب حلالیت مواد غیر قطبی در آب خیلی محدود است .

اهمیت خواص شیمیایی آب در مراحل متابولیکی و حیاتی کمتر از اهمیت خواص فیزیکی آن نیست . آب می تواند با مواد متابولیکی مختلف(مانند:استرهای آلی،پپتیدها، پلی ساکاریدها و غیره)فعل و انفعال کند و محصولات حاصل از واکنشهای هیدرولیز مواد آزاد شوند. همچنین آب به یون های هیدروژن و هیدروکسیل تجزیه می شود. در آب خالص ، غلظت تعادل یون های هیدروژن و نیز یون های هیدروکسیل برابر با 7-10 مول در لیتر است.

یون های هیدروژن و هیدروکسیل به وسیله فعل و انفعال شیمیایی مولکولهای آب با یون های هیدروژن ممکن است اثر قابل ملاحظه ای بر روی بسیاری از واکنشهایی که در سلولهای زنده انجام می شوند ، داشته باشد . کنترل غلظت یون هیدروژن در داخل سلولها که توسط برخی مواد(مانند اسیدهای آلی ) صورت می گیرد(مواد مزبور به عنوان سیستمهای بافر در داخل سلولها عمل می کنند)، در تعیین سرعت بسیاری از مراحل متابولیکی
اهمیت زیاد دارند.

آماس (Imbibition) اسمز(Osmosis)
برای فیزیولوژیست های گیاهی تمایز قایل شدن بین دو مرحله حرکت آب به داخل سلولهای گیاهی امری متداول است . این دو مرحله عبارتند از مرحله آماس(تورم) و دیگری مرحله اسمز .هردو مرحله مثالهایی از انتقال غیر فعال هستند. در برخی موارد اشاره شده است که حداقل قسمتی از مرحله حرکت آب به داخل سلولهای گیاهی ممکن است انتقال فعال باشد( کالوکس،1972) البته هیچ گونه دلیل قانع کننده ای درمورد این که برای انتقال فعال آب در عرض غشاهای پروتوپلاسمی احتمالا یک پمپ متابولیکی وجود دارد در دست نیست.

آماس ( براثر جذب آب)
آماس یا تورم به جذب عمقی و سطحی آب به وسیله اجزا و مواد غیر محلول جامد و آب دوست تشکیل دهنده پروتوپلاسم و دیواره سلولی گفته می شود . آب بر اثر انتشار و عمل لوله های مویینه ، به مواد مزبور نفوذ می کند. جهت حرکت آب از یک ناحیه، با پتانسیل آب بیشتر به ناحیه دیگر با پتانسیل آب کمتر است.

آماس عبارت از مرحله ای است که تنها هنگامی انجام می شود که مواد جامد گیاهی ( مانند چوب خشک ، دانه های خشک شده زنده یا مرده) با آب تماس حاصل کنند. در مورد دانه های خشک زنده ، هنگامی که دانه ها را به منظور رویش با آب مرطوب کنند ، عمل آماس براثر جذب آب در طی چند ساعت اولیه انجام می شود و سپس آب از طریق عمل اسمز جذب می شود.

اسمز
عمل اسمز به حرکت و عبور آب از یک غشای نیمه نفوذ پذیر که دو محلول را جدا می کند گفته می شود. در این جا نیز جهت حرکت آب از ناحیه با پتانسیل آب بیشتر به ناحیه دیگر با پتانسیل آب کمتر است و یک غشای نیمه نفوذ پذیر که نسبت به عبور مواد مختلف از آن قابلیت نفوذ نسبی دارد به مولکولهای آب اجازه می دهد که از آن عبور کنند ولی برای عبور مواد محلول غیر قابل نفوذ است . همه غشاهای پروتوپلاسمی دارای قابلیت نفوذ نسبی هستند. گرچه اصطلاح "نیمه نفوذ پذیر" در اغلب کتابها برای اسمز به کار برده می شود و لی ترجیح داده می شود به جای آن از اصطلاح"قابلیت نفوذ نسبی" استفاده شود. اصطلاح "غشای نیمه نفوذ پذیر" اولین بار توسط شیمیدان هلندی به نام وانت هوف به کار برده شد . نامبرده با استفاده از عمل اسمز برخی از خواص محلولهای رقیق را مطالعه کرد و به منظور ایجاد یک غشای نیمه نفوذپذیر که تنها نسبت به نفوذ و عبور یکی از مواد موجود در یک محلول (شامل مخلوطی ازچند ماده) ، از آن قابل نفوذ ونسبت به عبور سایر مواد از آن کاملا غیر قابل نفوذ باشد تحقیقاتی انجام داد . چنین غشایی احتمالا در سیستمهای زنده وجود ندارد.

برای نشان دادن اسمز آب خالص در درون یک ظرف ریخته می شود و یک محلول غلیظ مانند محلول ساکارز را در داخل یک کیسه که دارای غشا نیمه نفوذ پذیر است می ریزیم، غشا مزبور نسبت به آب نفوذ پذیر و نسبت به ساکارز غیر قابل نفوذ است . از یک ورقه سلوفان می توان به عنوان غشا استفاده کرد.
در شروع آزمایش محلول داخل غشای سلوفان در داخل آب ظرف فرو برده می شود(این سیستم یک اسمومتر[1] نامیده می شود).چون پتانسیل شیمیایی آب در آب خالص درون ظرف بیشتر از پتانسیل شیمیایی آب در محلول ساکارز است، درنتیجه آب به طور خود بخود از غشا (که دارای قابلیت نفوذ نسبی است) عبور می کند و وارد محلول ساکارز می شود .

با ادامه انتقال آب به داخل محلول ساکارز ارتفاع محلول ساکارز در لوله اسمومتر بالا افزایش می یابد . بنابراین فشار هیدرواستاتیک وارده به غشا افزایش می یابد. این فشار هیدرواستاتیک مولکولهای آب را تحت فشار قرار می دهد تا از محلول ساکارز و از طریق غشا به بیرون رانده شوند. هنگامی که فشارهیدرواستاتیک در لوله اسمومتر به اندازه ای افزایش یابد که پتانسیل شیمیایی آب در محلول ساکارز برابر با پتانسیل شیمیایی آب در آب خالص درون ظرف شود در این صورت حرکت و عبور آب از غشا و وارد شدن آن به محلول ساکارز متوقف می شود و این حالت تعادل است .

فشار هیدرواستاتیک معادل، پتانسیل اسمزی محلول نامید ه می شود .( به جای اصطلاح "فشار اسمزی" که اصطلاح قدیمیتری است از اصطلاح "پتانسیل اسمزی" استفاده می شود) حرکت آب از طریق اسمز در عرض همه غشاهای پروتوپلاسمی انجام می شود( خواه این غشا عبارت از یک لایه پروتوپلاسم باشد که بین دیواره سلولی و واکوئل یک سلول گیاهی قرار دارد و خواه یک غشای پروتوپلاسمی مانند غشای پلاسما یا تونوپلاست باشد) . یاد آوری می شود که آب سریعتر از هر ماده دیگری از غشاهای پروتوپلاسمی عبور می کند.

اهمیت اسمز
اهمیت عمل اسمز در جذب آب به وسیله سلولهای گیاهان عالی را نمی توان انکار کرد. با توجه به این که 70 درصد (و یا بیشتر) آب موجود در یک سلول زنده و بالغ گیاهی عبارت از آب موجود در واکوئل است و نیز آن که ، این آب به وسیله عمل اسمز از غشای پلاسما و غشای واکوئل(تونوپلاست) و لایه پروتوپلاسم موجود بین دو غشای مزبور عبور می کند ، آشکارتر می شود که عمل اسمز دارای اثر کمی خیلی بیشتر و مهمتری درجذب آب به وسیله سلولهای گیاهی است تا عمل آماس.

علاوه بر تاثیر آن در انتقال آب به داخل سلولهای گیاهی ، عمل اسمز اهمیت ویژه ای در برخی آزمایشهای تجربی فیزیولوژی گیاهی دارد . مثلا پدیده پلاسمولیز بستگی به اسمز دارد و یا استخراج اندامکهای سلولی(مانندمیتوکندریها)از سلولهای گیاهی بستگی به حذف و توقف عمل اسمز دارد.

اهمیت اسمز
. اگر اندامکهای سلولی در مراحل خروج آنها از سلولها ، در محلولهای خیلی رقیق و یا آب مقطر قرار گیرند خواهند ترکید . زیرا ورود سریع آب بر اثر اسمز ، به داخل این اندامکها منجر به افزایش حجم آنها و پاره شدن غشای خارجی آنها خواهد شد. برای جلوگیری و به حداقل رساندن این گونه آسیبها ، مواد محلول که دارای اثر فیزیولوژیکی نامطلوب نباشند ( مانند ساکارز) عمدا به محیط مایعی که مراحل استخراج اندامک ها در آن انجام می شود ، اضافه می کنند تا پتانسیل شیمیایی آب در محیط استخراج ، تقریبا برابر با پتانسیل شیمیایی آب در پروتوپلاسم زنده سلولها که اندامکها در آن قرار دارند ، بشود.

برخلاف اندامکهایی مانند میتوکندری ها ، سلولهای سالم گیاهی هنگامی که در آب مقطر قرار گیرند، نمی ترکند زیرا دیواره سلولزیشان نسبتا سخت است و هنگام ورود آب به داخل سلول تنها کش می آید ولی پاره نمی شود. ولی در حالت مزبور ، سلولهای گیاهی به علت خروج تدریجی برخی یون ها و مولکولهای کوچک از سلول، آسیب خواهند دید.

پتانسیل آب
فیزیولوژیستهای گیاهی اکنون اصطلاح " پتانسیل آب" را به جای اصطلاح "پتانسیل شیمیایی آب " به کار می برند . حرف یونانی (ψ) (سای) علامت نشان دهنده پتانسیل آب در یک سیستم ( مانند یک سلول یا بافت گیاهی ، یا یک نمونه خاک که گیاهان در آن رشد می کنند ، و یا یک محلول در داخل یک ظرف ) است . پتانسیل آب یا برحسب بار ( یکی از واحدهای اندازه گیری فشار) و یا برحسب مگا پاسکال) اندازه گیری می شود.

پتانسیل آب برای فیزیولوژیستهای گیاهی یک وسیله مناسب برای تشخیص و سنجش مقدار دقیق آب در سلولها و بافتهای گیاهی است . هرچه پتانسیل آب یک سلول یا یک بافت کمتر باشد توانایی جذب آب در آن سلول یابافت بیشتراست. برعکس هرچه پتانسیل آب یک بافت بیشتر باشد توانایی آن بافت در تامین آب برای سلولها و بافتهای (مجاور) بیشتر است. به این ترتیب پتانسیل آب برای اندازه گیری مقدار کمبود آب و تشنگی بافتها و سلولهای گیاهی مورد استفاده قرار می گیرد.

مقادیر مطلق پتانسیل آب اندازه گیری نمی شوند. در عوض ، اختلاف پتانسیل آب یک سیستم مورد تحقیق ( مانند یک بافت گیاهی) در مقایسه با پتانسیل آب یک سیستم استاندارد اندازه گیری می شود. سیستم استاندارد مورد مقایسه ، عبارت از مایع آب خالص در درجه حرارت و فشار آتمسفری یکسان با سیستم مورد مطالعه و تحقیق است . مقدار پتانسیل آب خالص در شرایط مذکور به طور قرار دادی برابر صفر بار است

پتانسیل آب در یک بافت گیاهی همیشه کمتر از صفر و بنابراین همیشه یک عدد منفی است. به عنوان یک قانون کلی ، برگهای اکثر گیاهانی که ریشه های آنها در خاکهای دارای آب کافی قرار دارند، دارای پتانسیل آب بین 2- تا 8- بار هستند. با کاهش مقدار آب و رطوبت خاک ، پتانسیل آب برگها منفی تر از 8- بار می شود و سرعت رشد برگها کاهش خواهد یافت . اغلب بافتهای گیاهان هنگامی که پتانسیل آب آنهابه حدود 15- بار کاهش یابد رشد شان کاملا متوقف می شود.

برگهای گیاهان علفی ممکن است مدت نسبتا کوتاهی زنده باقی بمانند ولی رشد نخواهند کرد(هنگامی که پتانسیل آب آنها کمتر از 15- بار شود) . بطور کلی ، اگر پتانسیل آب برگهای گیاهان علفی به 20- تا30- کاهش یابد ، در این صورت بعید به نظر می رسد که این برگها بتوانند دوباره به حالت طبیعی اولیه بهبود یابند . برخلاف برگهای گیاهان علفی ، برگهای بوته های بیابانی ، در شرایطی که پتانسیل آب آنها کاهش یابد باز دارای توانایی بیشتری در ادامه حیات به مدت طولانی تری هستند .

پتانسیل آب بوته های بیابانی در شرایط کم آبی و خشکی ممکن است خیلی کم و درحدود30- تا60- بار باشد . پتانسیل های آب کمتری (حدود100- بار) نیز در مورد گیاهان مزبور گزارش شده است. دانه های گیاهی زنده که در هوا خشک شده اند نیز دارای پتانسیل آب خیلی کم در حدود 60- تا 100- بار هستند . حتی ممکن است پتانسیل های آب کمتر از 100- بار نیز داشته باشند که بستگی به میزان خشکی دانه ها و نیز گونه گیاه دارد.

انتقال
فصل چهارم

فرایند انتقال
وقتی که آب از طریق گیاه از خاک به طرف اتمسفر حرکت می کند ، از محیطهای متنوع و نسبتا زیادی عبور می کند که مکانیزم انتقال آن نیز بستگی به نوع محیط ( دیواره سلولی ، سیتوپلاسم ، لایه چوبی) تفاوت می کند. در اینجا فرایندهای اساسی و نیروهای مربوطه که منجر به انتقال آب می شوند مورد توجه قرار خواهند گرفت.

انتشار عبارت است از حرکت مولکولها در راستای شیب غلظت و از طریق آشفتگی حرارتی تصادفی مولکولهای آب درون یک محلول ثابت نیستند ، بلکه دائما در حال جنب و جوش بوده ، به یکدیگر برخورد می کنند و انرژی جنبشی آنها تغییر می کند . انتشار فرایند ی است که نظم مولکولها را در اثر آشفتگی حرارتی تصادفی به هم می زند . چنین جنب و جوشی باعث می شود که مواد به طور ناخواسته از محلی که غلظت در آن زیاد ، به محلی که غلظت در آن کم است و به عبارت دیگر در راستای شیب غلظت، حرکت کنند (شکل 4-1).

فرایند انتقال
فیک ، دریافت که سرعت انتقال محلول از طریق انتشار ، مستقیما متناسب با شیب غلظت (دلتا سی به دلتا ایکس) است ، عدد ثابت این تناسب ، ظرفیت انتشار ماده است . رابطه را می توان به صورت زیر نوشت:
سرعت انتقال املاح یا جریان (JS) عبارت است از : مقدار ماده S که در واحد زمان از واحد سطح عبور می کند ( به عنوان مثال ممکن است واحد JS به صورت mol m-2 s-1 باشد) . ضریب انتشار ( DS ) عدد ثابتی است که درجه سهولت حرکت ماده S از طریق یک محیط خاص را اندازه گیری می کند . شیب غلظت ( CsΔ ) عبارت است از : اختلاف غلظت ماده S در دو نقطه جدا از هم که به اندازه xΔ از یکدیگر فاصله دارند. علامت منفی در فرمول نشان دهنده آن است که جریان ، در راستای شیب غلظت در حرکت است.
شکل 4-1: جنب و جوش حرارتی مولکولها منجر به انتشار می شود.

فرایند انتقال
سرعت انتشار در فواصل کم سریع و در فواصل طولانی بسیار کند است.
با استفاده از قانون فیک می توان زمان مورد نیاز برای انتشار یک ماده در طول یک مسیر مشخص را به دست آورد . اگر وضعیت اولیه را شرایطی در نظر بگیریم که غلظت در نقطه شروع بالا باشد، بنابراین در شکل هرچه از نقطه شروع فاصله بگیریم ، غلظت کم می شود. هر چقدر ماده از نقطه شروع ، به اطراف بیشتر انتشار یابد، شیب غلظت کمتر می شود و بنابراین حرکت شبکه کندتر می گردد .

انتشار مولکولهای کوچک در ابعاد سلولی سریع است. حال می خواهیم بدانیم وضعیت انتشار در فواصل طولانی چگونه است؟
درگیاه انتقال آب در فواصل طولانی از طریق جریان توده ای صورت می گیرد.

فرایند انتقال
دومین فرایندی که باعث حرکت آب می شود به عنوان جریان توده ای معروف است و به حرکت گروهی از مولکولها در اثر وجود یک اختلاف فشار اطلاق می شود.عبور آب از یک شیلنگ، جریان رود خانه و بارش باران از جمله مثالهای رایجی هستند که می توان برای درک این پدیده ذکر کرد.
اگر به جریان توده ای دریک لوله توجه کنیم میزان حجم جریان به عواملی مانند شعاع لوله ( r) ویسکوزیته مایع و اختلاف فشار( دلتا پی به دلتا ایکس ) بستگی دارد که جریان را به وجود می آورد.

فشار حاصل از جریان توده ای آب ، عامل اصلی انتقال آب در مسیر های طولانی گیاه از طریق آوند چوبی است که ممکن است در جریان یافتن آب در خاک و دیواره سلولی بافت گیاه نیز نقش داشته باشد . برخلاف انتشار ، مادامی که از تغییرات ویسکوزیته صرف نظر شود، فشار حاصل از جریان توده ای به شیب غلظت محلول بستگی ندارد.

فرایند انتقال
اسمز و یا حرکت آب از غشایی با نفوذ پذیری انتخابی ، مستلزم وجود جریان توده ای و انتشاری است.
سومین فرایندی که باعث انتقال آب می شود ، اسمزاست که به حرکت یک حلال مانند آب ، از طریق یک غشا اطلاق می شود . در همه سلولها ی زنده ، غشا ها به عنوان تقسیم کننده های مهم عمل می کنند. غشاها بخشهای مختلف سلول را از یکدیگر تفکیک کرده و تا حد زیادی از جابجایی مواد در بین هر بخش جلوگیری می کنند . غشای سلولهای گیاهی ،

نفوذ پذیری انتخابی دارند، یعنی به آب و سایر مواد بدون بار دار تاحدود زیادی محدود می کنند ، بنابراین غشای سلول از خروج بسیاری ازمواد درون سلول جلوگیری می کند . برای اینکه این گونه مواد بتوانند از غشای سلول عبور کنند پروتئینهای ناقل ویژه ای مورد نیاز است . در اینجا بحث را به عبور آب از غشا که بدون کمک پروتئینهای ناقل صورت می گیرد ، محدود می کنیم . البته باید توجه داشت که برخی ازپروتئینها ، تشکیل کانالهای غشایی را می دهند که هم آب و هم یونها می توانند از آنها عبور کنند.

فرایند انتقال
اسمز نیز مشابه انتشار و حرکت توده ای ، خود به خود در واکنش به یک نیروی عمل کننده اتفاق می افتد . در انتشار ، انتقال در اثر اختلاف غلظت صورت می گرفت . درجریان توده ای ،عامل انتقال اختلاف فشار بود ، در اسمز ، هم اختلاف غلظت و هم اختلاف فشار در انتقال نقش دارند. مسیر و میزان جریان آب از غشا فقط به وسیله یکی از عوامل فوق (اختلاف فشار آب یا اختلاف غلظت آن )تعیین نمی شود، بلکه مجموع این دو نیرو موثر هستند. این مشاهدات منجر به به وجود آمدن مفهوم نیروی عمل کننده کل یا مرکب شد که نشانگر شیب انرژی آزاد آب است.

در عمل ، این نیرو به عنوان اختلاف پتانسیل شیمیایی و یااختلاف پتانسیل آب معروف است . اصطلاح دوم در بین فیزیولوژیستهای گیاهی رایجتر است
مهمترین اجزای پتانسیل آب در فرمول π p – = ψ نشان داده شده است.

فرایند انتقال
همانطور که قبلاٌ گفته شد، پتانسیل آب با حرف یونانی ψ نشان داده شده می شود و مستقیما به پتانسیل شیمیایی آب مربوط می شود . پتانسیل آب نیز همانند پتانسیل شیمیایی ، یک کمیت نسبی بوده و به غلظت ، فشار و نیروی جاذبه زمین بستگی دارد . این رابطه را می توان به صورت زیر نوشت :
( نیروی جاذبه زمین ) f +(فشار) f + (غلظت) f+ *ψ = ψ

در اینجا *ψ پتانسیل آب در شرایط استاندار و (غلظت ) f ، (فشار) f و (نیروی جاذبه زمین) f به اثرات این سه عامل بر پتانسیل آب اشاره دارند. اکنون هر یک از واژه های فوق را جداگانه مورد بحث قرار می دهیم.
شرایط استاندارآب: وضعیت استاندار یا مرجع آب ، عبارت از آب خالص در فشار جو و درجه حرارتی مشابه درجه حرارت نمونه آب است . پتانسیل آب در شرایط استاندار (*ψ ) به طور قرار دادی صفر مگاپاسکال در نظر گرفته می شود.

فرایند انتقال
در اصل می توان هر مقداری را برای *ψ منظور کرد . ولی چنانچه آن را(*ψ) صفر در نظر بگیریم ، می توان آن را از فرمول حذف کرد . این امر باعث ساده تر شدن محاسبه ψ نمونه می شود ، ولی نباید فراموش کرد که هنوز ψ نسبت به پتانسیل آب خالص تعریف می شود.
غلظت : واژه (غلظت ) f نشان دهنده اثر غلظت آب بر ψ است. هرچه غلظت آب بیشتر باشد(یا به طور دقیقتر فعالیت آب) پتانسیل آب بیشتر می شود. غلظت به طور قراردادی به عنوان کسر مولی تعریف می شود . کسر مولی ماده s عبارتست از تعداد مولهای ماده s تقسیم بر تعداد کل انواع مولهای موجود در سیستم (از جمله مولهای s )

فرایند انتقال
علامت منفی نشان دهنده آن است که مواد محلول از طریق کاهش غلظت آب پتانسیل آب یک محلول را کم می کنند . اسمولالیته معیاری از غلظت کل مواد موجود در محلول صرف نظر از ویژگی های مولکولی یا حجم مواد محلول است . اسمولالیته را می توان به عنوان تعداد مولها ی مواد محلول در هر کیلوگرم ( یا لیتر) آب بیان کرد.
RTCs غالبا تحت عنوان فشار اسمزی محلول نامیده می شود وباحرف یونانی μ نشان داده می شود.

فرمول:
RTCs – = μ- = (غلظت) F
– نکته حائز اهمیت این است که فشار اسمزی و اسمولالیته ، تعدادکل اجزای حل شده را بدون در نظر گرفتن نوع آنها اندازه گیری می کنند. بنابراین اگر یک مول ساکارز را در یک مول آب حل کنیم ، محلولی به دست می آید که اسمولالیته آن mol kg-1 1 است . در عوض اگر یک مول نمک ( NaCl ) را در همان حجم آب حل کنیم ، محلولی به دست می آید که اسمولالیته آن mol kg-1 2 است ، زیرا نمک به دوجز تفکیک می شود.

فرایند انتقال
فشار : واژه ( فشار) f، اثر فشار هیدرولیکی را بر پتانسیل آب یک محلول بیان می کند . از آنجا که سلولهای گیاهی ، دیواره سلولی محکمی دارند، می توانند فشار هیدرولیکی داخلی خود را تا حد زیادی افزایش دهند که معمولا متخصصین فیزیولوژی گیاهی به آن فشار تورگرمی گویند . علاوه بر این ، در آوند چوبی و در بین دیواره های سلولی نیز یک کشش یا فشار هیدرواستاتیکی منفی به وجود می آید .

فشار منفی بیرون سلولها در حرکت آب در فواصل طولانی برای گیاه حائز اهمیت است.
درمطالعات پتانسیل آب ، ( فشار) f با حرف p نشان داده می شود و به عنوان فشار هیدرواستاتیکی اضافه بر فشار آتمسفر تعریف می شود .
به عبارت دیگر :
P = ( فشار) f
در اینجا فشار اتمسفر – فشار مطلق = p ( فشار اتمسفر = MPa 1/0) است .

فرایند انتقال
p گاهی اوقات معیار فشار نیز نامیده می شود بنابران مقدار p برای آب خالص در یک استوانه سرباز حتی اگر فشار مطلق آن MPa 1/0 (یک اتمسفر ) باشد برابر صفر مگا پاسکال است.
نیروی ثقل . نیروی ثقل باعث حرکت آب به طرف پایین می شود ،مگر اینکه نیرویی برابر و مخالف با آن ، آن را خنثی کند بنابراین جابجایی آب به ارتفاع بستگی دارد. اثر نیروی ثقل بر پتانسیل آب ( نیروی ثقل)f ، به ارتفاع ( h ) آب در بالای نقطه مرجع چگالی آب( pw ) و شتاب ثقل ( g ) بستگی دارد.

به عبارت دیگر:
Pwgh = (نیروی ثقل) f
پتانسیل کل آب :پتانسیل کل آب را می توان به صورت زیر نوشت:
– μ + p + ρwgh *ψ = ψ
در عمل چون مقدار پتانسیل مرجع (*ψ ) برابر صفر مگا پاسکال است لذا مقدار آن حذف می شود بنابراین خواهیم داشت:
– μ + p + ρwgh = ψ

فرایند انتقال
برای انتقال آب از یک ارتفاع عمودی کوتاه (مثلا کمتر از 5یا10 متر ) یا بین سلولها مجاور مقدار نیروی ثقل نیز ناچیز است و معمولا حذف می شود که در این صورت :
p – μ = ψ
این فرمول حاکی از آن است که پتانسیل آب تحت تاثیر دو نیروی اصلی فشار هیدرواستاتیک[1] و فشار اسمزی قرار دارد . باید توجه داشت که فشار اسمزی (μ) به عنوان یک کمیت مثبت تعریف می شود. علامت منفی برای کم کردن پتانسیل ناشی از مواد محلول در نظر گرفته می شود.

آب از طریق اختلاف پتانسیل ، تا هنگامی وارد سلول می شود که پتانسیل آب بیرون و درون سلول برابر شود:
مقدار واقعی پتانسیل آب و اجزای آن چیست ؟ پاسخ این سوال را می توان با یک مثال به خوبی تشریح کرد. ابتدافرض کنید که یک بشر پر از آب خالص است
(شکل 4-2) چون آب با آتمسفر در ارتباط است ، فشار هیدرواستاتیکی آب با فشار آتمسفر برابر است( p = 0 MPa ).

فرایند انتقال
چون هیچ ماده ای در این آب حل نشده است بنابراین فشار اسمزی نیز صفر مگا پاسکال (0 MPa = μ) است ، بنابراین پتانسیل آب برابر صفر مگاپاسکال (p – μ = ψ) می باشد . حال فرض کنید به اندازه 1/0 مول در لیتر ساکارز در حل شود (M1/0 ) (شکل 4-2 الف). این امر فشار اسمزی (μ ) را افزایش داده و به 244/0 مگاپاسکال می رساند و باعث کاهش پتانسیل آب (ψ ) در حد244/0 مگا پاسکال شود.
درحالت دوم یک سلول چروکیده شده ( یک سلول که فشار تورگر آن صفر است) را با کل غلظت مواد محلول داخل معادل M 3/0 ) (شکل 4-2 ج) در نظر بگیرید. این مقدار ماده محلول فشار اسمزی معادل732/0 مگاپاسکال به وجود می آورد .

چون سلول چروکیده است فشار داخلی آن به اندازه فشار هوای آزاد است و بنابراین فشار هیدرواستاتیک ( p ) صفر مگا پاسکال بوده و پتانسیل آب سلول732- مگاپاسکال است.
اگر این سلول در ظرفی که حاوی 1/0 مول ساکارز است قرار داده شود ) (شکل 4-2ج) چه اتفاقی خواهد افتاد؟ فشار اسمزی ( μ ) محلول ساکارز 244/0مگاپاسکال و پتانسیل آب ( ψ ) نیز 244/0- مگاپاسکال خواهد شد. در این صورت بین مقدار ψ محلول خارج سلول و داخل آن ، اختلاف زیادی به وجود می آید .

فرایند انتقال
اختلاف ψ با علامت Δψ نشان داده می شود و ψ بیرون منهای ψ درون سلول برابر 488/0 مگا پاسکال خواهد شد. این Δψ باعث جریان یافتن آب از ناحیه ای با Δ بالا ( کمترمنفی است) به ناحیه ای با Δ کم ( بیشتر منفی است) می شود و بنابراین حجم سلول باعث افزایش می یابد . چون سلولهای گیاهی با یک دیواره سخت احاطه می شوند. حتی افزایش جزئی در حجم سلول باعث افزایش زیادی در فشار هیدرواستاتیکی درون سلول می شود . همان طور که آب وارد سلول می شود دیواره سلول نیز به وسیله محتویات آن به عقب رانده می شود.

دیواره سلول نیز متقابلا به محتویات سلول فشار وارد می کند و آن را به عقب می راند . این وضعیت شبیه باد کردن یک توپ بسکتبال است، البته با این تفاوت که هوا قابل فشرده شدن بوده و آب تقریبا غیر قابل فشرده شدن است ، بنابراین تا وقتی که آب به دلیل حضور Δψ موجود در غشای پلاسمایی وارد سلول می شود فشار هیدرواستاتیک ( p ) سلول افزایش می یابد . نتیجه این امر باعث افزایش ψ و کاهش Δψ می شود . در نهایت p در حدی افزایش می یابد که ψ سلول به اندازه ψ محلول خارجی شود .

فرایند انتقال
در این نقطه تعادل برقرار می گردد (0 MPa = Δψ) و انتقال آب خالص متوقف می شود. مقدار جزئی آب به وسیله سلول جذب شده است که نمی تواند تاثیر معنی داری بر غلظت محلول خارجی داشته باشد زیرا حجم آب بیرون سلول در مقایسه با حجم سلول بسیار زیاد است . از این رو ψ و μ و p، در محلول خارج سلول تغییر نمی کنند، بنابراین در حالت تعادل 244/0- = محلول ψ = سلول ψ است . محاسبه pوμ سلول راحت است .

اگر فرض کنیم که دیواره سلول محکم باشد در آن صورت مقدار آبی که وارد می شود بسیار ناچیز است و بنابراین ضمن فرایند تعادل مقدار μ تقریبا ثابت باقی می ماند و از این رو مقدار μ برابر است با MPa732/0 +
فشار هیدرواستاتیکی سلول را می توان به طریق زیر محاسبه کرد:
MPa 488/0= 732/0 + -244/0= P = ψ + μ
اختلاف پتانسیل آب می تواند باعث از دست رفتن آب سلول شود.

فرایند انتقال
آب می تواند از طریق اسمز نیز سلول را ترک کند. در مثال قبل اگر سلول گیاهی را از محلول ساکارز M 1/0 به محلول ساکارز M 3/0 منتقل کنیم (شکل4-2 د) مقدار ψ بیرون منفی تر از سلول μ سلول شده و آب از سلول به محلول حرکت می کند . همچنان که آب سلول را ترک می کند حجم سلول نیز کاهش می یابد و همین طور که حجم سلول کم می شود، p نیز تاحدی کاهش می یابد به طوری که μ بیرون = μسلول خواهد شد. از روی فرمول پتانسیل می توان مقدار
0 Mpa = p را محاسبه کرد.

اگر سلول را بین دو صفحه قرار داده و فشار دهیم (شکل 4-2 ه ) p سلول به مقدار زیادی افزایش می یابد که نتیجه آن افزایش ψ سلول و تولید Δψ بوده و آب سلول به بیرون جریان می یابد . اگر فشار را ادامه دهیم تانیمی از آب سلول بیرون آیدو سپس سلول را در این وضعیت نگه داریم سلول به تعادل جدیدی دست پیدا می کند.

فرایند انتقال
همانند مثال قبل در حالت تعادل0MPa = Δψ بوده و مقدار آب اضافه شده به محلول خارجی به قدری ناچیز است که قابل چشم پوشی می باشد. بنابراین مقدار ψ سلو ل معادل مقدار قبل از اعمال فشار می شود ولی اجزای آن کاملا تفاوت دارند، زیرا نیمی از آب سلول در اثر فشرده شدن از آن خارج شده در حالی که مواد محلول داخل سلول تغییری نکرده اند( به دلیل انتخابی عمل کردن غشای سلول)

بنابراین چون در حالت تعادل غلظت مواد محلول سلول دو برابر شده از این رو مقدار μ نیز دو برابر حالت شروع خواهد شد (MPa 464/1=2*732/0) دانستن مقدار ψ وμ در حالت تعادل، کمک می کند که بتوانیم مقدار فشار تورگر رابه صورت زیر محاسبه کنیم:

Mpa 22/1=646/1+44/2- P = ψ + μ =

شکل 4-2: 5 مثال برای تشریح مفهوم پتانسیل آب و اجزای آن:
( الف) پتانسیل آب و اجزای آن برای آب خالص توضیح داده شده است.
(ب) محلولی را با غلظت M 1/0 ساکارز نشان می دهد.
(ج) یک سلول چروکیده در محلول M 1/0ساکارز انداخته شده است.چون در شروع،پتانسیل آب سلول کمتر از پتانسیل آب محلول است،سلول آب جذب کرده است. پس از برقراری تعادل،پتانسیل آب سلول برابر پتانسیل آب محلول شده و سلول دارای فشار تورگر مثبت شده است.
(د) نشان می دهد،که چگونه با افزایش غلظت ساکارز در محلول،آب سلول از دست رفته است.افزایش غلظت ساکارز،باعث کم شدن پتانسیل آب محلول شده و آب سلول را بیرون کشیده و از اینرو فشار تورگر سلول نیز کم شده است.راه دیگر از دست رفتن آب سلول این است که سلول بین دو صفحه قرار گرفته و به آرامی فشرده شده است.
(ه) در این مورد نیمی از آب سلول خارج و بنابراین فشار اسمزی دو برابر شده و فشار تورگر نیز مطابق با آن افزایش یافته است.

فرایند انتقال
پتانسیل ماتریک از طریق مواد نامحلولی مانند کلوئیدهای خاک و دیواره سلولی به وجود می آید و باعث کاهش پتانسیل آب می شود.
در بحثهای مربوط به خاک و دیواره سلول گاهی اوقات با مفهوم پتانسیل ماتریک برخورد می کنیم . پتانسیل ماتریک متغیری است که برای محاسبه کاهش پتانسیل آب در اثر تماس آن با سطح فاز جامدی مثل دیواره سلول یا ذرات رس خاک به کار می رود .

چنین آثار متقابلی تمایل مولکولهای آب به فعالیت شیمیایی یا تبخیر را کاهش می دهند. رشد سلول فتو سنتز و تولید همگی شدیدا تحت تاثیر پتانسیل آب و اجزای آن هستند . پتانسیل آب نیز مانند درجه حرارت بدن انسان ، شاخص خوبی برای ارزیابی سلامت گیاه است.

مفهوم پتانسیل آب برای ارزیابی وضعیت آبی گیاه مفید است
مفهوم پتانسیل آب دو کاربرد عمده دارد ، یکی اینکه پتانسیل آب کمیتی است که مسیر جریان آب را در عرض غشای سلولی کنترل می کند، به ویژه اینکه اختلاف در پتانسیل آب( Δψ) دو طرف غشا، نیرویی را ایجاد می کند که باعث انتقال آب از طریق اسمز می شود . اختلاف پتانسیل آب( با برخی محدودیتها) به عنوان نیرویی که باعث حرکت آب از بافتها ( که از سلولها ی زیادی تشکیل شده اند ) نیز می شود ، مطرح است .

دومین اهمیت استفاده از پتانسیل آب این است که به عنوان معیاری برای وضعیت آبی گیاه مطرح است . کمبود آب مانع از رشد و فتوسنتز شده و اثرات دیگری را نیز به بار می آورد . رشد سلول فرایندی است که بیشتر تحت تاثیر کمبود آب واقع می شود . تنش شدید آب باعث جلوگیری از تقسیم شدن سلول ، جلوگیری از سنتز پروتئین و دیواره تجمع مواد محلول بسته شدن روزنه ها و نیز جلوگیری از فتوسنتز می شود.
پتانسیل آب معیاری است که چگونگی وضعیت آب گیاه مثل شادابی و خشکی رانشان می دهد و شاخص مناسبی برای تنش آبی گیاهانی که تنش آ ب را تجربه می کنند می باشد .

انتقال ترکیبات آلی
فصل پنجم

مقدمه
تقسیم کار بین ریشه ها و اندامهای هوایی در گیاهان خاکزی نیاز به یک سیستم جهت انتقال عناصر معدنی از ریشه ها به طرف قسمت های هوایی را ایجاد نموده است . این تقسیم کار ، گیاهان را نیازمند سیستمی نموده است که بتواند تولیدات فتوسنتزی را از برگها به ریشه ها که قادر به انجام فتوسنتز نیستند ، منتقل نماید . همچنین مواد فتوسنتزی باید به بعضی قسمت ها مانند ساقه ها و برگهای جوان که در این زمینه خود کفا نیستند ، انتقال یابند .

مقدمه
گرچه هارتینگ در سال 1837پیشنهاد کرد که قندها از طریق آوند های آبکش انتقال می یابند اما در سال 1956 بود که بیدولف شواهد قطعی مربوط به این فرآیند را ارائه نمود. در آزمایش های اولیه ، با حلقه برداری از پوست قسمت هوایی چوبی که در آن آوند چوبی دست نخورده باقی می ماند ، حالت تورم در بافت های بالای منطقه حلقه برداری ایجاد می گردید و بافت های زیر ناحیه حلقه برداری حالت چروکیدگی نشان می دادند.

تجزیه شیمیایی بافت های متورم شده نشان داد که این بافت ها حاوی ساکارز با غلظت زیاد بودند ، اما در آوند های چوبی نیز همانند آوند های آبکش غلظت ساکارز بالا بود . در آن زمان این نکته که وظیفه آوند های چوبی انتقال آب و عناصر معدنی به طرف بالا می باشد ، ثابت نشده بود ، لذا سوال مربوط به محل انتقال ساکارز حل نشده باقی ماند.

مقدمه
پس از آن دانشمندان از تیمارهای جراحی متفاوتی که در آنها نوارهائی از آوند آبکش جدا می شد و با استفاده از وازلین یا صفحات مومی از آوند چوب جدا نگه داشته می شد، استفاده نمودند.
برداشتن حلقه ای از آوند آبکش به وسیله حلقه برداری از ساقه موجب کاهش شدید در غلظت کربوهیدرات ها در آوند آبکش شد ، این آزمایش بوضوح نشان داد که آوند آبکش مسیر معمولی انتقال کربوهیدرات ها می باشد . همچنین این شواهد نشان دهنده حرکت جانبی کربوهیدرات ها از آوند آبکش به آوند چوب بود.

شواهد قطعی در رابطه با این موضوع که آوند ها ی آبکش محل انتقال کربوهیدرات ها هستند ، زمانی به دست آمد که دسترسی به رادیو ایزوتوپ ها امکان پذیر شد . قرار دادن برگها در معرض 14CO2 باعث تولید ساکارز نشاندار به عنوان شکل اصلی ماده فتوسنتزی قابل انتقال در گیاه می شود .اگر قسمتی از ساقه گیاه قطع شود، می توان به وسیله اتورادیوگرافی توزیع ساکارز نشان دار را در این ساقه تعیین کرد.

مقدمه
انتشار ، یک فرایند مهم در حرکت مواد در درون سلول ها می باشد ، اما برای انتقال از قسمت های هوایی به ریشه ها فاقد اهمیت است . نتایج آزمایشات نشان می دهند که حرکت مواد فتوسنتزی از قسمت های هوایی به ریشه ها می تواند با سرعت 100 سانتی متر در ساعت صورت گیرد.
امروزه اکثر دانشمندان گیاه شناسی عقیده دارند که ترکیبات مختلف به وسیله جریان توده ای محلول در آوند های آبکش منتقل می شوند . این پدیده ابتدا بدان دلیل پیشنهاد شد که با قطع کردن آوند آبکش ، مواد تراوش یافته در سطح قطع شده تجمع می یافت .

در مطالعات دیگری نیز که در آنها از شته ها استفاده شد ، این مطالب تایید گردید. به وسیله وارد کردن نیش خود به طور مستقیم به درون یک سلول آبکش از ساقه ها و برگها ی گیاه تغذیه می کنند. وقتی که یک شته در حال تغذیه را بیهوش می کنند و نیش آن را بدقت قطع می نمایند ، یک قسمت کوتاه از نیش بر روی ساقه باقی می ماند . در این حالت محلولی با سرعت تقریبا یک میکرولیتر در ساعت به مدت چندین روز از آن خارج می شود.

مقدمه
مکانیسمی که به وسیله آن جریان توده ای رخ می دهد ، در ابتدا در سال 1930 به وسیله مونچ ارائه شد ، او پیشنهاد کرد که ساکارز (که در نتیجه فتوسنتز در برگها تولید می شود ) وارد سلولهای آبکشی رگبرگهای فرعی می گردد و باغلظت زیاد در آن تجمع می یابد . تحت تاثیر پدیده اسمزی ، آب به درون این سلولها ی آبکشی وارد می شود و در نتیجه فشار تورژسانس بالا یی ایجاد می شود . در ریشه ها ساکارز از سلولهای آبکش به بافت های اطراف وارد می شودو در متابولیسم عمومی و رشد مورد استفاده قرار می گیرد ، این فرایند باعث کاهش فشار تورژسانس در عناصر آبکش ریشه می شود . مونچ پیشنهاد کرد که در نتیجه این تفاوت فشار ، مایع به وسیله جریان توده ای از محل دارای فشار هیدروستاتیکی بالا به محل دارای فشار هیدروستاتیکی[2] پایین در لوله های آبکشی حرکت می کند . مواد محلول نیز همراه با این جریان بسهولت منتقل می شوند . طرح ساده تئوری جریان فشاری مونچ در شکل 5-1 نشان داده شده است.
شکل 5-1: دیاگرام تئوری جریان فشاری در آوند آبکش

مقدمه
انتقال مواد از منبع به مخزن صورت می گیرد
همان طور که می دانیم برگ منبع ساکارز است و به همین دلیل در آوند های آبکش برگ فشار ایجاد می شود . برعکس ، ریشه ها ساکارز را مصرف کرده و از آن استفاده می کنند ، لذا ریشه به عنوان یک اندام مخزن عمل می نماید . بنابر این تئوری جریان توده ای پیشنهاد می کند که انتقال مواد از منبع به مخزن صورت می گیرد.

مقدمه
ممکن است به مخزنهای متفاوتی در گیاه فکر کرد ه باشید اما یافتن منبع های متفاوت مشکل می باشد . بدیهی است که برگها منبع اصلی می باشند اما تمامی اندامهای ذخیره ای هنگامی که نمو مجددا آغاز می شود به عنوان منبع عمل خواهند کرد. بنابر این غده سیب زمینی وقتی که شروع به جوانه زدن می کند و همچنین سایر اندامهای ذخیره ای به عنوان منبع در نظر گرفته می شوند . حتی برگهای جوان یک جوانه انتهایی مخزنهای موقتی هستند .

به محض اینکه این برگها به یک اندازه مشخص می رسند ، شروع به صدور ساکارز می کنند . تغییر از مخزن به منبع یک پدیده جالب است و توجه زیادی را از سوی دانشمندان علوم گیاهی به خود جلب کرده است زیرا این فرایند می تواند اطلاعاتی را در رابطه با چگونگی کنترل انتقال مواد در اختیار بگذارد.

ایرادهای وارد بر مفهوم جریان توده ای
مخالفان با تئوری جریان توده ای ایرادهایی را به قابلیت کاربرد این روش برای تمامی بافتها طرح کرده اند . تئوری اولیه مونچ بر این نکته تاکید داشت که عناصر آوندی مجاری غیر فعالی هستند که محلولها از درون آنها جریان می یابند . شواهد قابل توجهی وجود دارد که نشان می دهند عناصر آوندی این چنین نیستند . بیلسکی نشان داد که بافت های آوندی جدا شده از سیب می توانند ساکارز را در خلاف جهت شیب غلظت تجمع دهند .

سایر دانشمندان نشان دادند که مواد باز دارنده تنفس مانند KCN، از انتقال محلولها در آوند آبکش جلوگیری می کنند . بنابراین دانشمندان امروزه بر این عقیده اند که آوند های آبکش بافت هایی هستند که از لحاظ متابولیکی تا حد زیادی فعال می باشند ، با این وجود هنوز هم عقیده بر این است که انتقال مواد به وسیله جریان توده ای صورت می گیرد .

ایرادهای وارد بر مفهوم جریان توده ای
آوند آبکش بافت بسیار حساسی است و در صورت ایجاد اندکی آسیب به آن ، کالوزدر صفحات غربالی رسوب کرده و پدیده انتقال در آن متوقف می شود. شته ها می توانند نیش خود را وارد آوند آبکش کنند بدون اینکه در وظایف آوند آبکش توقف حاصل گردد . اما هنوز قادر به یافتن چگونگی عمل آنها نیستیم . اگر بدانیم که شته ها چگونه این ویژگی را کسب کرده اند ، احتمالا خواهیم توانست از یک شیوه جدید در رابطه با وظایف آوند آبکش استفاده کنیم .

چگونگی ورود و خروج ساکارز در آوند آبکش
برای تشریح چگونگی انتقال ساکارز در آوند های آبکش ، فرایند های بارگیری و تخلیه آبکشی را بررسی می کنیم .
قندها در سلولهای مزوفیل برگ ساخته می شوند و جهت ارسال به مقصد به رگبرگها انتقال می یابند . در اینجا رگبرگهای فرعی نقش اصلی را بازی می کنند . برای مثال در چغندر قند رگبرگهای فرعی 13 برابر رگبرگهای اصلی توسعه یافته اند و هر 10 میکرون از رگبرگها فرعی به 8 یا 9 سلول مزوفیل سرویس دهی می کند.

می توان با استفاده از ترکیبی از دو روش ساکارز -14C واتورادیو گرافی ، حرکت ساکارز را در برگها تعیین کرد . در صورتی که برگها برای مدتی در حدود 30 دقیقه در معرض ساکارز -14C قرار داده شوند و سپس این برگها شستشو داده شده و برای مدتی در معرض ساکارز غیر نشاندار قرار داده شوند ، آن گاه می توان نشان داد که ساکارز سلول های مزوفیلی را ترک می کند و وارد رگبرگهای فرعی شده و به دنبال آن وارد رگبرگهای اصلی می شود .

به نظر می رسد که در چغندر قند و بعضی گونه های گیاهی دیگر مانند نخود فرنگی ، حرکت ساکارز از سلولهای مزوفیل به رگبرگهای فرعی قبل از آنکه وارد کمپلکس سلول آبکشی –سلول همراه (STC) شود ، یک مرحله آپوپلاستی را طی می کند.سیم پلاسم عبارت است از هر چیزی که به وسیله غشاء سلولی احاطه شده باشد، به استثنای واکوئل .

آپوپلاست عبارت است از هر چیزی که در بیرون غشاء قرار گرفته باشد بجز فضاهای خالی محبوس شده در بین دیواره های سلولی . معمولا گفته می شود که ترکیبات مولکولی سبک ( کمتر از 800 دالتون) می توانند آزادانه در درون آپو پلاست یا سیم پلاست انتشار یابند. این دو مسیر ،مسیر های انتقالی مهم درون بافت های گیاهی را تشکیل می دهند.

شکل 5-2: مسیر سیم پلاست و آپوپلاست در سلول گیاهی

در گونه هایی که ویژگی های بالا را دارا می باشند ، اغلب سلول های همراه غیر عادی وجود دارد که مکان اولیه جذب محلولها به درون سیستم STC می باشد. این سلولهای غیر عادی ، سلولها ی ناقل[1] نامیده می شوند. ویژگی مشخص این سلولها داشتن دیواره ای است که به درون سیتوپلاسم رشد کرده و به طور قابل توجهی سطح غشاء را افزایش داده است(شکل 5-3).
سلولهای ناقل مسئول انتقال در فواصل کوتاه می باشند و در گیاهانی که این نوع انتقال در آنها دارای اهمیت می باشد ، سلول های فوق در مکانهای استراتژیک یافت می شوند .
شکل5-3: طرح یک سلول ناقل.به دیواره رشد یافته به سمت داخل و غشا چین دار توجه کنید. سلولهای ناقل دارای سیتوپلاسم متراکم با میتوکندریهای فراوان می باشند.

این مکانها شامل لایه آلورن بذور غلات یعنی جائی که مواد غذایی از بافت ماردی به آندوسپرم در حال رشد انتقال می یابد و همچنین سلولهای غده های نمکی که نمک ها را به بیرون ترشح می کنند ، می باشند.
.

در سلول های همراه افزایش سطح غشاء سلولی باعث افزایش محل های مناسب جهت نصب سیستم جذب ساکارز می گردد که این سیستم شامل یک پمپ پروتون ATPase و یک سیستم انتقال هم جهت پروتون – ساکارز است(شکل 5-4) .
این سیستم به طور موثری انرژی آزادشده از هیدرولیزATP را برای پمپ کردن یونها از عرض غشاءمورد استفاده قرار می دهد

سپس یون های H+ انتقال یافته به درون آپوپلاسم برای جذب ساکارز به درون سیتوپلاسم مورد استفاده قرار می گیرند.
در حالی که شواهد بسیار خوبی در زمینه بارگیری آپوپلاستی در چغند قند و نخود فرنگی وجود دارد ، اما این وضعیت عمومیت ندارد. در تعداد دیگری از گونه های گیاهی از جمله خیار ، وذرت ، مدارک مربوط به بارگیری آپوپلاستی
مبهم و کم می باشد. در این سیستم ها ، تعداد زیادی از پلاسمودسماتا ها سلولهای مزوفیل و STCs را به هم پیوند می دهند و اختلاف غلظت کمی بین آنها وجود دارد .

قدرت انتخابی برای متابولیت های انتقال یافته پایین است و مواد تراوش یافته از آپوپلاست برگهای تغذیه شده با CO2 14 حاوی مواد نشان دار نیستند . لذا چنین نتیجه گیری می کنیم که در ذرت و خیار ، ساکارز از طریق مسیر سیم پلاستی مستقیما وارد STC می شود. در چنین حالتی درک این موضوع که سلول های STC چگونه می توانند فشار تورژسانسی بیشتری را در مقایسه با سلولهای مزوفیل ایجاد کنند ، مشکل به نظر می رسد . به نظر می رسد که در این سیستم ها ، فشار زیاد تنها در STC وجود ندارد بلکه در سراسر برگ منبع وجود دارد

تخلیه از آوند های آبکش می تواند به دو طریق صورت گیرد
مدرک خوبی وجود دارد که نشان می دهد ساکارز وارد شده به یک برگ جوان در حال رشد از طریق سیم پلاسم منتقل می شود. این حالت در مریستم های انتهای ریشه ها و ساقه نیز وجود دارد . در این بافت ها تعداد زیادی پلاسمودسماتا ، STC را به سلولهای دریافت کننده وصل می کند.
در بافت هایی که تخلیه سیم پلاستی را نشان می دهند ، ساکارز در مخزن سریعا مصرف می شود . مقداری از ساکارز صرف تامین سوبستراهای تنفسی و مقداری از آن نیز در جهت تامین سوبستر اهای لازم برای فرایندهای رشد به مصرف می رسد.
شکل 5-4:طرح انتقال هم جهت پروتون-ساکارز

این فرایند باعث کاهش غلظت ساکارز آوند آبکش در منطقه مخزن شده و از این طریق شرایط مربوط به تئوری جریان فشار فراهم می گردد.
در بافت هایی که تخلیه سیم پلاستی را نشان می دهند ، همینکه ساکارز آوند آبکش را ترک می کند ، وارد سلول های مخزن می شود لذا در اینجا بارگیری مخزن وجود ندارد. اما وقتی که تخلیه آپوپلاستی صورت می گیرد ، شرایط فوق رخ نخواهد داد . مثالهای مربوط به این حالت عبارت است از تخلیه آپوپلاستی در بذر در حال نمو .

در این حالت جنین در حال نمو به نسلی جدا از سلول های مادری تعلق دارد و هیچ گونه ارتباط سیتوپلاسمی مستقیم بین این دو وجود ندارد . ساکارز از طریق آوند آبکش به دانه تحویل داده می شود و از آنجا به وسیله یک سیستم آوندی که در پوسته بذرامتداد دارد ، وارد دانه می شود . ساکارز به طریقه سیتوپلاسمی از سلولهای آبکش به سلولهای احاطه کننده آوند آبکش وارد می گردد تا اینکه به لایه درونی تر پوسته بذر برسد (شکل 5-5).

ساکارز از لایه درونی پوسته دانه به درون آپوپلاست وارد می گردد که این آپوپلاست در بذر غلات به صورت یک حفره در درون آندوسپرم است و حفره آندوسپرمی نامیده می شود . در دانه لگوم ها حفره آندوسپرمی وجود ندارد ولی یک فاصله بین بافت مادری و دانه جوان وجود دارد. حرکت ساکارز به درون دانه در حال نمو از طریق جذب از آپوپلاست به سیم پلاست دانه صورت می گیرد.
بنابراین در اینجا علاوه بر فرایند تخلیه آبکشی یک فرایند مشخص بارگیری مخزن نیز وجود دارد.
شکل5-5: طرح برش عرضی میوه غلات

درون سیم پلاسم دانه های غلات و لگوم غلظت ساکارز افزایش نمی یابد بلکه سریعا تبدیل به ذخایر چربی ، پروتئین و روغن می گردد . این حالت در تعدادی از اندامهای ذخیره ای رویشی مانند غده سیب زمینی دیده می شود . نیشکر و چغندر قند از این لحاظ جالب هستند ، زیرا همان طور که می دانید ، آنها ساکارز را ذخیره می کنند و نیاز جهانی برای این فراورده را تامین می نمایند . در این دو گونه هیچ گونه پیوند پلاسمودسماتایی بین STC و سلول های ذخیره این وجود ندارد .

ساکارز از طریق انتشار تسهیل یافته به بیرون از سیم پلاسم STC و سپس به درون سیم پلاسم سلول ذخیره ای منتقل می شود ، اما از طریق فعالیت سیستم انتقال هم جهت پروتون –ساکارز که بر روی تونو پلاست قرار دارد ، به درون واکوئول انتقال داده می شود . نیشکر و چغند قند از این لحاظ که منابع غذایی می باشند ، بسیار مهم هستند و لذا تلاش زیادی برای تشریح جزئیات کنترل تجمع ساکارز در این دو گیاه صورت گرفته است.

شواهد زیادی نشان می دهند که توانایی مخزن در جذب مواد فتوسنتزی که قدرت مخزن نیز نامیده می شود ، به دو عامل بستگی دارد که عبادتند از :1- اندازه مخزن و2- فعالیت مخزن .
– بنابراین:
فعالیت مخزن* اندازه مخزن= قدرت مخزن

فهم اندازه مخزن نسبتا آسان است . اما در این رابطه که کدام یک از پارامترهای اندازه مخزن مهم هستند ، توافقی وجود ندارد . لذا ، بعضی از محققین وزن مخزن را به عنوان معیاری برای اندازه مخزن در نظر گرفته اند در حالی که بقیه محققین تعداد سلول را به عنوان یک معیار اندازه گیری بهتر مورد توجه قرار داده اند . اهمیت معیار دوم (تعدادسلول) به وسیله گزارشهایی که در آنها یک همبستگی مثبت بین وزن نهایی میوه و تعداد سلول دانه مشاهده شده است ، تایید می شود. این رابطه ابتدا در غلات نشان داده شد،اما مشخص گردید که این وضعیت در بسیاری از لگوم ها و همچنین آفتابگردان وجود دارد .

فعالیت مخزن را می توان به عنوان مجموع فعالیت های متابولیکی مخزن در نظر گرفت که انعکاسی از توانایی مخزن در جذب و استفاده از ساکارز است.
اهمیت اندازه مخزن را می توان بسادگی اثبات کرد . برای مثال در آزمایشی تعداد از دانه های یک خوشه گندم در حال رشد برداشته شد و در نتیجه وزن نهایی خوشه کاهش یافت . بررسی دقیق تر خوشه های آزمایشی نتایج جالبی را آشکار کرد. متوسط وزن هر دانه در خوشه های آزمایشی از متوسط وزن دانه در خوشه های شاهد بیشتر بود .

بنابراین اگر چه وزن کل خوشه کاهش پیدا کرد ولی یک فعالیت جبرانی وجود داشته است. این وضعیت در بسیاری از محصولات زراعی مخصوصا در کلزای روغنی دیده می شود اما نمی توان آن را بآسانی به وسیله معادله ای که قدرت مخزن را به اندازه و فعالیت مخزن مرتبط می سازد، توضیح داد.
علاوه بر مطالب فوق برخی شواهد پیشنهاد می کنند که فعالیت منبع می تواند تغییر کند و این تغییر ممکن است موثر باشد .

برای مثال وقتی که همه برگهای منبع در سویا بجز یک برگ برای یک دوره طولانی ( برای مثال 8روز) سایه اندازی شود ، توانایی سنتز و صدور ساکارز در برگی که در معرض نور قرار داشته به طور قابل توجهی افزایش می یابد لذا فعالیت منبع به خودی خود ثابت نیست. شواهد دیگری نیز وجود دارند که نشان می دهند معادله ذکر شده بیش از حد ساده است. این شواهد شامل آزمایش هایی می باشد که در آنها انتهای مسیر آبکشی در محل مخزن در محلولی باغلظت بالا قرار داده می شود .

این آزمایش ها ابتدا در یک سیستم ابتکاری انجام گرفت که در آنها از قسمت های فنجانی شکل حاصل از نصف نمودن پوسته بذریاستفاده شد(شکل 5-6). میوه های لوبیا را می توان باز کرده و دانه های در حال رشد را مشاهده کرد. هر یک از این دانه ها به وسیله یک اتصال به دیواره میوه پیوسته اند . می توان این دانه ها را جدا کرده و پوشش آنها را بدقت قطع کرد و در این حالت جنین را برداشته و دو قسمت فنجانی شکل با هر یک از نیمه های پوسته بذری تهیه کرد. اگر گیاه مادر با 14CO2 تغذیه شود ،

ساکارز 14C تولید می گردد و به درون بذور انتقال می یابد و همان گونه که در بالا توضیح داده شد
در آنجا تخلیه آبکشی به صورت آپوپلاستی انجام می گیرد . قطع پوسته های فنجانی شکل بذور نصف شده از این گیاهان ماده ای را که حاوی مقادیر قابل توجهی ساکارز – 14C است در اختیار قرار می دهد . آزمایش ها نشان می دهد که تخلیه ساکارز حاوی کربن رادیو اکتیو از پوسته فنجانی شکل تا مدت قابل توجهی ادامه می یابد ..
شکل5-6: تهیه قسمتهای فنجانی شکل از بذور نصف شده لوبیا

می توان محلولهایی را درون این کاسه قرار داد و آزمایش هایی را برای تعیین اثر مواد تشکیل دهنده این محلولها بر تخلیه مواد بررسی کرد . این آزمایش ها نشان می دهند که محلولها ی با غلظت زیاد (مثلا یک مگاپاسکال)در مقایسه با آب یا محلولهای دارای غلظت کمتر به طور قابل توجهی تخلیه مواد را تحریک می کنند

. بررسی های انجام شده روی بذور لوبیاو دانه های غلات در حالت دست نخودره نشان می دهند که غلظت این قبیل مواد محلول در آپوپلاست دانه های در حال رشد طبیعی می باشد. اثر غلظت مواد محلول بر تخلیه آبکشی در دانه های انگور و در یک سیستم کاملا متفاوت ، یعنی ریشه ، نیز مشاهده شده است.

باتوجه به این آزمایش ها به نظر می رسد که فعالیت مخزن نه تنها شامل جذب و متابولیسم ساکارز است ، بلکه شامل آزاد کردن متابولیت ها نیز می باشد به گونه ای که باعث افزایش غلظت مواد محلول در آپوپلاست مخزن می گردد . این شواهد ممکن است بررسی مجدد تئوری جریان فشار ایجاب کند.براساس این تئوری ایجاد اختلاف فشار در دو انتهای مجرای آبکشی کاملا به دلیل اختلاف در غلظت ساکارز است .

تا زمانی که اختلاف فشار وجود داشته باشد، جریان توده ای مواد محلول نیز در آوند آبکش ادامه خواهد یافت و ساکارز همراه با این جریان انتقال می یابد
آزمایش های فوق را می توان به این ترتیب تفسیر کرد که کاهش فشار تورژسانس در آوند آبکش مخزن سبب افزایش شیب فشار بین منبع و مقصد می گردد و منجر به افزایش تحویل ساکارز می شود . این نوع اثر مواد محلول در مخزن باید به عنوان یک جزء تکمیلی مورد توجه قرار گیرد و به خاطر نقش مهمی که این موضوع در کنترل عملکرد دارد ، عنوان کارهای تحقیقاتی بسیار جدی می باشد.

ساکارز تنها ترکیب انتقال یافته در آوند های آبکش نیست
درحالی که قندها بخش اصلی مواد محلول قابل انتقال آوند آبکش را تشکیل می دهند اما مقادیر قابل توجهی از سایر مواد بویژه اسیدهای آمینه و یون های پتاسیم نیز در آوندهای آبکش انتقال می یابند .محتوی یون های معدنی موجود درآوند آبکش با توجه به اندام گیاهی و ایام سال تفاوت می کند .

اگر چه عناصر معدنی از طریق آوند های چوبی وارد برگها می شوند ، مقدارقابل توجهی انتقال مجدد عناصر معدنی از برگهای پیرتر به برگهای جوانتر صورت می گیرد . این جابجایی در آوندهای آبکش انجام میشود.در گیاهان چند ساله حتی انتقال مجدد بیشتری که در ارتباط با آماده شدن برای برگ ریزی در پاییز است صورت می گیرد.

آزمایش های نشان می دهند که انتقال مجدد عناصر معدنی از برگهای در حال پیر شدن از طریق آوند های آبکش صورت می گیرد.
تا اینجا آنچه ممکن است به عنوان فرایند های مهم فیزیولوژیکی در حیات گیاهی مطرح باشد،مورد مطالعه قرار داده شد.مضمون این مطالب نشان دادن عواقب ناشی از زندگی کردن در محیط های خاکی (خشکی) و تشریح راههائی که به وسیله آنها گیاهان بر این مسائل فائق آمده و بقاء می یابند، بوده است. البته ، بقاء نیز شامل رشدو تولید مثل و همچنین فرایندهای گلدهی و میوه دهی می باشد.

انتقال ترکیبات آلی
فصل پنجم

مقدمه
تقسیم کار بین ریشه ها و اندامهای هوایی در گیاهان خاکزی نیاز به یک سیستم جهت انتقال عناصر معدنی از ریشه ها به طرف قسمت های هوایی را ایجاد نموده است . این تقسیم کار ، گیاهان را نیازمند سیستمی نموده است که بتواند تولیدات فتوسنتزی را از برگها به ریشه ها که قادر به انجام فتوسنتز نیستند ، منتقل نماید . همچنین مواد فتوسنتزی باید به بعضی قسمت ها مانند ساقه ها و برگهای جوان که در این زمینه خود کفا نیستند ، انتقال یابند .

مقدمه
گرچه هارتینگ در سال 1837پیشنهاد کرد که قندها از طریق آوند های آبکش انتقال می یابند اما در سال 1956 بود که بیدولف شواهد قطعی مربوط به این فرآیند را ارائه نمود. در آزمایش های اولیه ، با حلقه برداری از پوست قسمت هوایی چوبی که در آن آوند چوبی دست نخورده باقی می ماند ، حالت تورم در بافت های بالای منطقه حلقه برداری ایجاد می گردید و بافت های زیر ناحیه حلقه برداری حالت چروکیدگی نشان می دادند.

تجزیه شیمیایی بافت های متورم شده نشان داد که این بافت ها حاوی ساکارز با غلظت زیاد بودند ، اما در آوند های چوبی نیز همانند آوند های آبکش غلظت ساکارز بالا بود . در آن زمان این نکته که وظیفه آوند های چوبی انتقال آب و عناصر معدنی به طرف بالا می باشد ، ثابت نشده بود ، لذا سوال مربوط به محل انتقال ساکارز حل نشده باقی ماند.

مقدمه
پس از آن دانشمندان از تیمارهای جراحی متفاوتی که در آنها نوارهائی از آوند آبکش جدا می شد و با استفاده از وازلین یا صفحات مومی از آوند چوب جدا نگه داشته می شد، استفاده نمودند.
برداشتن حلقه ای از آوند آبکش به وسیله حلقه برداری از ساقه موجب کاهش شدید در غلظت کربوهیدرات ها در آوند آبکش شد ، این آزمایش بوضوح نشان داد که آوند آبکش مسیر معمولی انتقال کربوهیدرات ها می باشد . همچنین این شواهد نشان دهنده حرکت جانبی کربوهیدرات ها از آوند آبکش به آوند چوب بود.

شواهد قطعی در رابطه با این موضوع که آوند ها ی آبکش محل انتقال کربوهیدرات ها هستند ، زمانی به دست آمد که دسترسی به رادیو ایزوتوپ ها امکان پذیر شد . قرار دادن برگها در معرض 14CO2 باعث تولید ساکارز نشاندار به عنوان شکل اصلی ماده فتوسنتزی قابل انتقال در گیاه می شود .اگر قسمتی از ساقه گیاه قطع شود، می توان به وسیله اتورادیوگرافی توزیع ساکارز نشان دار را در این ساقه تعیین کرد.

مقدمه
انتشار ، یک فرایند مهم در حرکت مواد در درون سلول ها می باشد ، اما برای انتقال از قسمت های هوایی به ریشه ها فاقد اهمیت است . نتایج آزمایشات نشان می دهند که حرکت مواد فتوسنتزی از قسمت های هوایی به ریشه ها می تواند با سرعت 100 سانتی متر در ساعت صورت گیرد.
امروزه اکثر دانشمندان گیاه شناسی عقیده دارند که ترکیبات مختلف به وسیله جریان توده ای محلول در آوند های آبکش منتقل می شوند . این پدیده ابتدا بدان دلیل پیشنهاد شد که با قطع کردن آوند آبکش ، مواد تراوش یافته در سطح قطع شده تجمع می یافت .

در مطالعات دیگری نیز که در آنها از شته ها استفاده شد ، این مطالب تایید گردید. به وسیله وارد کردن نیش خود به طور مستقیم به درون یک سلول آبکش از ساقه ها و برگها ی گیاه تغذیه می کنند. وقتی که یک شته در حال تغذیه را بیهوش می کنند و نیش آن را بدقت قطع می نمایند ، یک قسمت کوتاه از نیش بر روی ساقه باقی می ماند . در این حالت محلولی با سرعت تقریبا یک میکرولیتر در ساعت به مدت چندین روز از آن خارج می شود.

مقدمه
مکانیسمی که به وسیله آن جریان توده ای رخ می دهد ، در ابتدا در سال 1930 به وسیله مونچ ارائه شد ، او پیشنهاد کرد که ساکارز (که در نتیجه فتوسنتز در برگها تولید می شود ) وارد سلولهای آبکشی رگبرگهای فرعی می گردد و باغلظت زیاد در آن تجمع می یابد . تحت تاثیر پدیده اسمزی ، آب به درون این سلولها ی آبکشی وارد می شود و در نتیجه فشار تورژسانس بالا یی ایجاد می شود . در ریشه ها ساکارز از سلولهای آبکش به بافت های اطراف وارد می شودو در متابولیسم عمومی و رشد مورد استفاده قرار می گیرد ، این فرایند باعث کاهش فشار تورژسانس در عناصر آبکش ریشه می شود . مونچ پیشنهاد کرد که در نتیجه این تفاوت فشار ، مایع به وسیله جریان توده ای از محل دارای فشار هیدروستاتیکی بالا به محل دارای فشار هیدروستاتیکی[2] پایین در لوله های آبکشی حرکت می کند . مواد محلول نیز همراه با این جریان بسهولت منتقل می شوند . طرح ساده تئوری جریان فشاری مونچ در شکل 5-1 نشان داده شده است.
شکل 5-1: دیاگرام تئوری جریان فشاری در آوند آبکش

مقدمه
انتقال مواد از منبع به مخزن صورت می گیرد
همان طور که می دانیم برگ منبع ساکارز است و به همین دلیل در آوند های آبکش برگ فشار ایجاد می شود . برعکس ، ریشه ها ساکارز را مصرف کرده و از آن استفاده می کنند ، لذا ریشه به عنوان یک اندام مخزن عمل می نماید . بنابر این تئوری جریان توده ای پیشنهاد می کند که انتقال مواد از منبع به مخزن صورت می گیرد.

مقدمه
ممکن است به مخزنهای متفاوتی در گیاه فکر کرد ه باشید اما یافتن منبع های متفاوت مشکل می باشد . بدیهی است که برگها منبع اصلی می باشند اما تمامی اندامهای ذخیره ای هنگامی که نمو مجددا آغاز می شود به عنوان منبع عمل خواهند کرد. بنابر این غده سیب زمینی وقتی که شروع به جوانه زدن می کند و همچنین سایر اندامهای ذخیره ای به عنوان منبع در نظر گرفته می شوند . حتی برگهای جوان یک جوانه انتهایی مخزنهای موقتی هستند .

به محض اینکه این برگها به یک اندازه مشخص می رسند ، شروع به صدور ساکارز می کنند . تغییر از مخزن به منبع یک پدیده جالب است و توجه زیادی را از سوی دانشمندان علوم گیاهی به خود جلب کرده است زیرا این فرایند می تواند اطلاعاتی را در رابطه با چگونگی کنترل انتقال مواد در اختیار بگذارد.

ایرادهای وارد بر مفهوم جریان توده ای
مخالفان با تئوری جریان توده ای ایرادهایی را به قابلیت کاربرد این روش برای تمامی بافتها طرح کرده اند . تئوری اولیه مونچ بر این نکته تاکید داشت که عناصر آوندی مجاری غیر فعالی هستند که محلولها از درون آنها جریان می یابند . شواهد قابل توجهی وجود دارد که نشان می دهند عناصر آوندی این چنین نیستند . بیلسکی نشان داد که بافت های آوندی جدا شده از سیب می توانند ساکارز را در خلاف جهت شیب غلظت تجمع دهند .

سایر دانشمندان نشان دادند که مواد باز دارنده تنفس مانند KCN، از انتقال محلولها در آوند آبکش جلوگیری می کنند . بنابراین دانشمندان امروزه بر این عقیده اند که آوند های آبکش بافت هایی هستند که از لحاظ متابولیکی تا حد زیادی فعال می باشند ، با این وجود هنوز هم عقیده بر این است که انتقال مواد به وسیله جریان توده ای صورت می گیرد .

ایرادهای وارد بر مفهوم جریان توده ای
آوند آبکش بافت بسیار حساسی است و در صورت ایجاد اندکی آسیب به آن ، کالوزدر صفحات غربالی رسوب کرده و پدیده انتقال در آن متوقف می شود. شته ها می توانند نیش خود را وارد آوند آبکش کنند بدون اینکه در وظایف آوند آبکش توقف حاصل گردد . اما هنوز قادر به یافتن چگونگی عمل آنها نیستیم . اگر بدانیم که شته ها چگونه این ویژگی را کسب کرده اند ، احتمالا خواهیم توانست از یک شیوه جدید در رابطه با وظایف آوند آبکش استفاده کنیم .

چگونگی ورود و خروج ساکارز در آوند آبکش
برای تشریح چگونگی انتقال ساکارز در آوند های آبکش ، فرایند های بارگیری و تخلیه آبکشی را بررسی می کنیم .
قندها در سلولهای مزوفیل برگ ساخته می شوند و جهت ارسال به مقصد به رگبرگها انتقال می یابند . در اینجا رگبرگهای فرعی نقش اصلی را بازی می کنند . برای مثال در چغندر قند رگبرگهای فرعی 13 برابر رگبرگهای اصلی توسعه یافته اند و هر 10 میکرون از رگبرگها فرعی به 8 یا 9 سلول مزوفیل سرویس دهی می کند.

می توان با استفاده از ترکیبی از دو روش ساکارز -14C واتورادیو گرافی ، حرکت ساکارز را در برگها تعیین کرد . در صورتی که برگها برای مدتی در حدود 30 دقیقه در معرض ساکارز -14C قرار داده شوند و سپس این برگها شستشو داده شده و برای مدتی در معرض ساکارز غیر نشاندار قرار داده شوند ، آن گاه می توان نشان داد که ساکارز سلول های مزوفیلی را ترک می کند و وارد رگبرگهای فرعی شده و به دنبال آن وارد رگبرگهای اصلی می شود .

به نظر می رسد که در چغندر قند و بعضی گونه های گیاهی دیگر مانند نخود فرنگی ، حرکت ساکارز از سلولهای مزوفیل به رگبرگهای فرعی قبل از آنکه وارد کمپلکس سلول آبکشی –سلول همراه (STC) شود ، یک مرحله آپوپلاستی را طی می کند.سیم پلاسم عبارت است از هر چیزی که به وسیله غشاء سلولی احاطه شده باشد، به استثنای واکوئل .

آپوپلاست عبارت است از هر چیزی که در بیرون غشاء قرار گرفته باشد بجز فضاهای خالی محبوس شده در بین دیواره های سلولی . معمولا گفته می شود که ترکیبات مولکولی سبک ( کمتر از 800 دالتون) می توانند آزادانه در درون آپو پلاست یا سیم پلاست انتشار یابند. این دو مسیر ،مسیر های انتقالی مهم درون بافت های گیاهی را تشکیل می دهند.

شکل 5-2: مسیر سیم پلاست و آپوپلاست در سلول گیاهی

در گونه هایی که ویژگی های بالا را دارا می باشند ، اغلب سلول های همراه غیر عادی وجود دارد که مکان اولیه جذب محلولها به درون سیستم STC می باشد. این سلولهای غیر عادی ، سلولها ی ناقل[1] نامیده می شوند. ویژگی مشخص این سلولها داشتن دیواره ای است که به درون سیتوپلاسم رشد کرده و به طور قابل توجهی سطح غشاء را افزایش داده است(شکل 5-3).
سلولهای ناقل مسئول انتقال در فواصل کوتاه می باشند و در گیاهانی که این نوع انتقال در آنها دارای اهمیت می باشد ، سلول های فوق در مکانهای استراتژیک یافت می شوند .
شکل5-3: طرح یک سلول ناقل.به دیواره رشد یافته به سمت داخل و غشا چین دار توجه کنید. سلولهای ناقل دارای سیتوپلاسم متراکم با میتوکندریهای فراوان می باشند.

این مکانها شامل لایه آلورن بذور غلات یعنی جائی که مواد غذایی از بافت ماردی به آندوسپرم در حال رشد انتقال می یابد و همچنین سلولهای غده های نمکی که نمک ها را به بیرون ترشح می کنند ، می باشند.
.

در سلول های همراه افزایش سطح غشاء سلولی باعث افزایش محل های مناسب جهت نصب سیستم جذب ساکارز می گردد که این سیستم شامل یک پمپ پروتون ATPase و یک سیستم انتقال هم جهت پروتون – ساکارز است(شکل 5-4) .
این سیستم به طور موثری انرژی آزادشده از هیدرولیزATP را برای پمپ کردن یونها از عرض غشاءمورد استفاده قرار می دهد

سپس یون های H+ انتقال یافته به درون آپوپلاسم برای جذب ساکارز به درون سیتوپلاسم مورد استفاده قرار می گیرند.
در حالی که شواهد بسیار خوبی در زمینه بارگیری آپوپلاستی در چغند قند و نخود فرنگی وجود دارد ، اما این وضعیت عمومیت ندارد. در تعداد دیگری از گونه های گیاهی از جمله خیار ، وذرت ، مدارک مربوط به بارگیری آپوپلاستی
مبهم و کم می باشد. در این سیستم ها ، تعداد زیادی از پلاسمودسماتا ها سلولهای مزوفیل و STCs را به هم پیوند می دهند و اختلاف غلظت کمی بین آنها وجود دارد .

قدرت انتخابی برای متابولیت های انتقال یافته پایین است و مواد تراوش یافته از آپوپلاست برگهای تغذیه شده با CO2 14 حاوی مواد نشان دار نیستند . لذا چنین نتیجه گیری می کنیم که در ذرت و خیار ، ساکارز از طریق مسیر سیم پلاستی مستقیما وارد STC می شود. در چنین حالتی درک این موضوع که سلول های STC چگونه می توانند فشار تورژسانسی بیشتری را در مقایسه با سلولهای مزوفیل ایجاد کنند ، مشکل به نظر می رسد . به نظر می رسد که در این سیستم ها ، فشار زیاد تنها در STC وجود ندارد بلکه در سراسر برگ منبع وجود دارد

تخلیه از آوند های آبکش می تواند به دو طریق صورت گیرد
مدرک خوبی وجود دارد که نشان می دهد ساکارز وارد شده به یک برگ جوان در حال رشد از طریق سیم پلاسم منتقل می شود. این حالت در مریستم های انتهای ریشه ها و ساقه نیز وجود دارد . در این بافت ها تعداد زیادی پلاسمودسماتا ، STC را به سلولهای دریافت کننده وصل می کند.
در بافت هایی که تخلیه سیم پلاستی را نشان می دهند ، ساکارز در مخزن سریعا مصرف می شود . مقداری از ساکارز صرف تامین سوبستراهای تنفسی و مقداری از آن نیز در جهت تامین سوبستر اهای لازم برای فرایندهای رشد به مصرف می رسد.
شکل 5-4:طرح انتقال هم جهت پروتون-ساکارز

این فرایند باعث کاهش غلظت ساکارز آوند آبکش در منطقه مخزن شده و از این طریق شرایط مربوط به تئوری جریان فشار فراهم می گردد.
در بافت هایی که تخلیه سیم پلاستی را نشان می دهند ، همینکه ساکارز آوند آبکش را ترک می کند ، وارد سلول های مخزن می شود لذا در اینجا بارگیری مخزن وجود ندارد. اما وقتی که تخلیه آپوپلاستی صورت می گیرد ، شرایط فوق رخ نخواهد داد . مثالهای مربوط به این حالت عبارت است از تخلیه آپوپلاستی در بذر در حال نمو .

در این حالت جنین در حال نمو به نسلی جدا از سلول های مادری تعلق دارد و هیچ گونه ارتباط سیتوپلاسمی مستقیم بین این دو وجود ندارد . ساکارز از طریق آوند آبکش به دانه تحویل داده می شود و از آنجا به وسیله یک سیستم آوندی که در پوسته بذرامتداد دارد ، وارد دانه می شود . ساکارز به طریقه سیتوپلاسمی از سلولهای آبکش به سلولهای احاطه کننده آوند آبکش وارد می گردد تا اینکه به لایه درونی تر پوسته بذر برسد (شکل 5-5).

ساکارز از لایه درونی پوسته دانه به درون آپوپلاست وارد می گردد که این آپوپلاست در بذر غلات به صورت یک حفره در درون آندوسپرم است و حفره آندوسپرمی نامیده می شود . در دانه لگوم ها حفره آندوسپرمی وجود ندارد ولی یک فاصله بین بافت مادری و دانه جوان وجود دارد. حرکت ساکارز به درون دانه در حال نمو از طریق جذب از آپوپلاست به سیم پلاست دانه صورت می گیرد.
بنابراین در اینجا علاوه بر فرایند تخلیه آبکشی یک فرایند مشخص بارگیری مخزن نیز وجود دارد.
شکل5-5: طرح برش عرضی میوه غلات

درون سیم پلاسم دانه های غلات و لگوم غلظت ساکارز افزایش نمی یابد بلکه سریعا تبدیل به ذخایر چربی ، پروتئین و روغن می گردد . این حالت در تعدادی از اندامهای ذخیره ای رویشی مانند غده سیب زمینی دیده می شود . نیشکر و چغندر قند از این لحاظ جالب هستند ، زیرا همان طور که می دانید ، آنها ساکارز را ذخیره می کنند و نیاز جهانی برای این فراورده را تامین می نمایند . در این دو گونه هیچ گونه پیوند پلاسمودسماتایی بین STC و سلول های ذخیره این وجود ندارد .

ساکارز از طریق انتشار تسهیل یافته به بیرون از سیم پلاسم STC و سپس به درون سیم پلاسم سلول ذخیره ای منتقل می شود ، اما از طریق فعالیت سیستم انتقال هم جهت پروتون –ساکارز که بر روی تونو پلاست قرار دارد ، به درون واکوئول انتقال داده می شود . نیشکر و چغند قند از این لحاظ که منابع غذایی می باشند ، بسیار مهم هستند و لذا تلاش زیادی برای تشریح جزئیات کنترل تجمع ساکارز در این دو گیاه صورت گرفته است.

شواهد زیادی نشان می دهند که توانایی مخزن در جذب مواد فتوسنتزی که قدرت مخزن نیز نامیده می شود ، به دو عامل بستگی دارد که عبادتند از :1- اندازه مخزن و2- فعالیت مخزن .
– بنابراین:
فعالیت مخزن* اندازه مخزن= قدرت مخزن

فهم اندازه مخزن نسبتا آسان است . اما در این رابطه که کدام یک از پارامترهای اندازه مخزن مهم هستند ، توافقی وجود ندارد . لذا ، بعضی از محققین وزن مخزن را به عنوان معیاری برای اندازه مخزن در نظر گرفته اند در حالی که بقیه محققین تعداد سلول را به عنوان یک معیار اندازه گیری بهتر مورد توجه قرار داده اند . اهمیت معیار دوم (تعدادسلول) به وسیله گزارشهایی که در آنها یک همبستگی مثبت بین وزن نهایی میوه و تعداد سلول دانه مشاهده شده است ، تایید می شود. این رابطه ابتدا در غلات نشان داده شد،اما مشخص گردید که این وضعیت در بسیاری از لگوم ها و همچنین آفتابگردان وجود دارد .

فعالیت مخزن را می توان به عنوان مجموع فعالیت های متابولیکی مخزن در نظر گرفت که انعکاسی از توانایی مخزن در جذب و استفاده از ساکارز است.
اهمیت اندازه مخزن را می توان بسادگی اثبات کرد . برای مثال در آزمایشی تعداد از دانه های یک خوشه گندم در حال رشد برداشته شد و در نتیجه وزن نهایی خوشه کاهش یافت . بررسی دقیق تر خوشه های آزمایشی نتایج جالبی را آشکار کرد. متوسط وزن هر دانه در خوشه های آزمایشی از متوسط وزن دانه در خوشه های شاهد بیشتر بود .

بنابراین اگر چه وزن کل خوشه کاهش پیدا کرد ولی یک فعالیت جبرانی وجود داشته است. این وضعیت در بسیاری از محصولات زراعی مخصوصا در کلزای روغنی دیده می شود اما نمی توان آن را بآسانی به وسیله معادله ای که قدرت مخزن را به اندازه و فعالیت مخزن مرتبط می سازد، توضیح داد.
علاوه بر مطالب فوق برخی شواهد پیشنهاد می کنند که فعالیت منبع می تواند تغییر کند و این تغییر ممکن است موثر باشد .

برای مثال وقتی که همه برگهای منبع در سویا بجز یک برگ برای یک دوره طولانی ( برای مثال 8روز) سایه اندازی شود ، توانایی سنتز و صدور ساکارز در برگی که در معرض نور قرار داشته به طور قابل توجهی افزایش می یابد لذا فعالیت منبع به خودی خود ثابت نیست. شواهد دیگری نیز وجود دارند که نشان می دهند معادله ذکر شده بیش از حد ساده است. این شواهد شامل آزمایش هایی می باشد که در آنها انتهای مسیر آبکشی در محل مخزن در محلولی باغلظت بالا قرار داده می شود .

این آزمایش ها ابتدا در یک سیستم ابتکاری انجام گرفت که در آنها از قسمت های فنجانی شکل حاصل از نصف نمودن پوسته بذریاستفاده شد(شکل 5-6). میوه های لوبیا را می توان باز کرده و دانه های در حال رشد را مشاهده کرد. هر یک از این دانه ها به وسیله یک اتصال به دیواره میوه پیوسته اند . می توان این دانه ها را جدا کرده و پوشش آنها را بدقت قطع کرد و در این حالت جنین را برداشته و دو قسمت فنجانی شکل با هر یک از نیمه های پوسته بذری تهیه کرد. اگر گیاه مادر با 14CO2 تغذیه شود ،

ساکارز 14C تولید می گردد و به درون بذور انتقال می یابد و همان گونه که در بالا توضیح داده شد
در آنجا تخلیه آبکشی به صورت آپوپلاستی انجام می گیرد . قطع پوسته های فنجانی شکل بذور نصف شده از این گیاهان ماده ای را که حاوی مقادیر قابل توجهی ساکارز – 14C است در اختیار قرار می دهد . آزمایش ها نشان می دهد که تخلیه ساکارز حاوی کربن رادیو اکتیو از پوسته فنجانی شکل تا مدت قابل توجهی ادامه می یابد ..
شکل5-6: تهیه قسمتهای فنجانی شکل از بذور نصف شده لوبیا

می توان محلولهایی را درون این کاسه قرار داد و آزمایش هایی را برای تعیین اثر مواد تشکیل دهنده این محلولها بر تخلیه مواد بررسی کرد . این آزمایش ها نشان می دهند که محلولها ی با غلظت زیاد (مثلا یک مگاپاسکال)در مقایسه با آب یا محلولهای دارای غلظت کمتر به طور قابل توجهی تخلیه مواد را تحریک می کنند

. بررسی های انجام شده روی بذور لوبیاو دانه های غلات در حالت دست نخودره نشان می دهند که غلظت این قبیل مواد محلول در آپوپلاست دانه های در حال رشد طبیعی می باشد. اثر غلظت مواد محلول بر تخلیه آبکشی در دانه های انگور و در یک سیستم کاملا متفاوت ، یعنی ریشه ، نیز مشاهده شده است.

باتوجه به این آزمایش ها به نظر می رسد که فعالیت مخزن نه تنها شامل جذب و متابولیسم ساکارز است ، بلکه شامل آزاد کردن متابولیت ها نیز می باشد به گونه ای که باعث افزایش غلظت مواد محلول در آپوپلاست مخزن می گردد . این شواهد ممکن است بررسی مجدد تئوری جریان فشار ایجاب کند.براساس این تئوری ایجاد اختلاف فشار در دو انتهای مجرای آبکشی کاملا به دلیل اختلاف در غلظت ساکارز است .

تا زمانی که اختلاف فشار وجود داشته باشد، جریان توده ای مواد محلول نیز در آوند آبکش ادامه خواهد یافت و ساکارز همراه با این جریان انتقال می یابد
آزمایش های فوق را می توان به این ترتیب تفسیر کرد که کاهش فشار تورژسانس در آوند آبکش مخزن سبب افزایش شیب فشار بین منبع و مقصد می گردد و منجر به افزایش تحویل ساکارز می شود . این نوع اثر مواد محلول در مخزن باید به عنوان یک جزء تکمیلی مورد توجه قرار گیرد و به خاطر نقش مهمی که این موضوع در کنترل عملکرد دارد ، عنوان کارهای تحقیقاتی بسیار جدی می باشد.

ساکارز تنها ترکیب انتقال یافته در آوند های آبکش نیست
درحالی که قندها بخش اصلی مواد محلول قابل انتقال آوند آبکش را تشکیل می دهند اما مقادیر قابل توجهی از سایر مواد بویژه اسیدهای آمینه و یون های پتاسیم نیز در آوندهای آبکش انتقال می یابند .محتوی یون های معدنی موجود درآوند آبکش با توجه به اندام گیاهی و ایام سال تفاوت می کند .

اگر چه عناصر معدنی از طریق آوند های چوبی وارد برگها می شوند ، مقدارقابل توجهی انتقال مجدد عناصر معدنی از برگهای پیرتر به برگهای جوانتر صورت می گیرد . این جابجایی در آوندهای آبکش انجام میشود.در گیاهان چند ساله حتی انتقال مجدد بیشتری که در ارتباط با آماده شدن برای برگ ریزی در پاییز است صورت می گیرد.

آزمایش های نشان می دهند که انتقال مجدد عناصر معدنی از برگهای در حال پیر شدن از طریق آوند های آبکش صورت می گیرد.
تا اینجا آنچه ممکن است به عنوان فرایند های مهم فیزیولوژیکی در حیات گیاهی مطرح باشد،مورد مطالعه قرار داده شد.مضمون این مطالب نشان دادن عواقب ناشی از زندگی کردن در محیط های خاکی (خشکی) و تشریح راههائی که به وسیله آنها گیاهان بر این مسائل فائق آمده و بقاء می یابند، بوده است. البته ، بقاء نیز شامل رشدو تولید مثل و همچنین فرایندهای گلدهی و میوه دهی می باشد.

رشد و نمو
فصل هفتم

مقدمه
همه ما با واژه رشد آشنا هستیم. رشد و نمو از ویژگیهای موجودات زنده است و وجه تمایز جاندارن از موجودات بی جان شمرده شده است.این فرایند موجب بقاء و توالی موجود زنده می گردند. تغییرات رشد و نمو در موجودات زنده از الگوهای ویژه ای پیروی می کنند. الگوهای رشد و نموی در گیاهان تحت تاثیر عوامل مختلفی قرار می گیرند. این عوامل شامل دو بخش درونی و بیرونی می باشند.

عوامل درونی در تشکیل ساختار و فیزیولوژی گیاه نقش دارند که عوامل ژنتیکی و عوامل بیوشیمیایی از جمله هورمونها از آن جمله اند. عوامل محیطی معمولاٌ در شکل و اندازه و گاهی در برخی از ویژگیهای ساختمانی تاثیر دارند.

تعریف واژه ها
رشد1 رشد را می توان به روشهای مختلف بیان کرد مانند افزایش ارتفاع، افزایش حجم، افزایش ماده خشک و … که از روش اندازه گیری طول ،ارتفاع، سطح، حجم و یا جرم اندازه گیری می شود.
این پدیده فقط در موجودات زنده عمومیت دارد و یک پدیده کمی است. 1 -Growth

فرآیند رشد باعث افزایش ارتفاع، حجم و یا افزایش ماده خشک می گردد و می توان رشد را به هر کدام از این صفات مرتبط دانست. در حقیقت هرگونه تغییر کمی که در وزن و حجم موجود زنده می بینیم را رشد می گوییم.

رشد عبارتست از افزایش وزن و یا حجم که به صورت برگشت ناپذیر همراه با ماده سازی در موجود زنده روی می دهد. در طول زمان رشد گیاه از یک تخم بارور( زیگوت) پیکره گیاه پر سلولی که از قسمتهای مختلف ریشه، برگها، و ساقه ها، تشکیل شده، تغییر می کند.
در حقیقت رشد مجموعه ای از تغییرات کمی است نظیر افزایش ابعاد سلولها و تعداد سلولها، طویل شدن میان گره ها، بزرگ شدن برگها و تشکیل برگهای جدید. رشد در سلولهای زنده انجام می گیرد که توسط مراحل مختلف متابولیکی شامل سنتز ماکرومولکولها کامل می شود.

رشد گیاهان در دو مرحله صورت می گیرد:
تقسیم سلولی (مرزیس): ایجاد سلولهای همسان از سلولهای تخم اولیه
افزایش ابعاد 2:بزرگ شدن سلولهای حاصل از تقسیم.
2 -Auxesis

نمو3: در مقابل واژه رشد، نمو بکار می رود.
مجموعه تغییرات کیفی که منجر به عبور از یک مرحله زیستی به مرحله دیگر می شود را نمو گویند. برای رسیدن به مرحله نمو وجود رشد ضروری است. منظور از نمو پیدایش بخشهای جدید در گیاه است مثلاٌ ورود گیاه از فاز رویشی به فاز زایشی.
پدیده رشد در گیاهان با افزایش تعداد سلولها ،افزایش ابعاد سلولی و تمایز34 صورت می گیرد.
3 -velopmentDe
4 -Differention

قبل از رشد، پروتوپلاسم افزایش پیدا کرده، سپس تقسیم سلولی و به دنبال آن رشد طولی سلولها صورت می گیرد. برای افزایش پروتوپلاسم باید ترکیبات تشکیل دهنده آن ( ترکیبات ازت دار) بوجود آیند. که لازمه آن انجام عمل فتوسنتز است. پدیده رشد و نمو همگام با انجام فتوسنتز در گیاه روی می دهد. برای فتوسنتز مواد پروتوپلاسمی و به دنبال آن تقسیم سلولی و نیز برای گسترش طولی سلولها یا انبساط آنها عمل فتوسنتز ضروری به نظر می رسد. رشد و نمو از هم مستقل نیستند و رشد(پدیده کمی) منجر به تغییرات کیفی(نمو) می شود.

تمایز: کلیه تغیییرات و تحولات زیستی شامل تغییر و تحولات ساختاری، فیزیولوژیکی، بیوشیمیایی و متابولیسمی در سلولها است. و از سلولهای مشابه و هم ارزش سلولهایی با ویژگیها و ارزش های متفاوت بوجود می آید.

مهمترین عامل در بروز تماز ایجاد تقسیم نامتقارن اولیه در سلولها است که دلیل آن وجود قطبیت5 در محتویات سلولی است . به علاوه اگر تقسیمات اولیه مساوی باشد، رقابت متابولیکی که بین سلولهای حاصل از تقسیم برای کسب ترکیبات لازم برای نمو بوجود می آید و نیز اثرات القایی آنها بر یکدیگر نظیر فشارهای مکانیکی، باعث عوامل ژنتیکی نیز به عنوان یک فاکتور مهم در بروز تمایز در بین سلولها قابل مطرح شده هستند. اگرچه عوامل ژنتیکی تیز تحت تاثیر عوامل محیطی قابل تغییر می باشند تمایز در دو سطح قابل بررسی است.
5 Polarite-

الف: تمایز درون سلولی6: تغییراتی که در یک سلول واحد اتفاق می افتد و یک سلول جوان را به سلول مسن تبدیل می کند. مانند تغییر ترکیبات و ساختار دیواره، افزایش تعداد میتوکندریها و پلاستها و کاهش تعداد ریبوزوم ها و مقدار RNA و .. اشاره نمود.
6 Intera Celluar-

ب: تمایز بین سلولی7: هنگامی که تحولات سلول تخم را در یکی از گیاهان آرابیدوپسیس مورد مطالعه قرار دهیم. سلول تخم ابتدا به دو سلول قاعده ای8 و انتهایی9 تقسم شده، سپس هر یک از آنها به طریق خاصی تقسیم شده و در نتیجه اختلافی که از نظر تقسیم بین دو سلول قاعده ای و انتهایی بوجود می آید دو بخش جنین و بند از یکدیگر متمایز می کند ولی تمایز بین سلولها به همین جا ختم نمی شود و در داخل جنین دستجات مختلف سلول از یکدیگر متمایز شده که نتیجه آن بوجود آمدن لپه ها، ژمول، ساقه و ریشچه است.
7 Inter Celluar-
8 Basal Cell-
9 Terminal Cell-

وجود تمایز برای انجام امور نمو لازم و ضروری به نظر می آید و تا دو نوع تمایز ذکر شده صورت نگرید،انواع سلولها، بافت ها و اندام ها و بخشهای جدید بوجود نمی آید. و مرحله نمو عملی نمی شود.

یکی از مسائل موجود در این زمینه عللی است که منجر به آغاز تمایز در سلول می باشند. در ابتدا تمام سلولهای مریستمی دارای اطلاعات ژنتیکی یکسانی هستند، اما با این حال مثلاٌ یک سلول مریستمی در گیاهان تبدیل به یک سلول لوله سیو10 در بافت آوند آبکش تبدیل شود در حالی که یک سلول مریستمی دیگر به یک سلول وسل11 در بافت آوند چوبی تبدیل می شود. 10 Sieve tube cell-
11 Vesel element

از نظر زیست ملکولی سلولی که قرار است سلول آبکش شود ممکن است دارای پروتئین های مشخص و خاصی باشد که با نوع پروتئین های سلولی که قرار است سلول چوب شود متفاوت است. البته در این میان مواد رشد گیاهی، نوکلئوتیدها و یونها ممکن است در فعالیت تمایزی و سنتز پروتئین های مخصوص نقش داشته باشند. ترکیبات ذکر شده ممکن است از داخل سلول یا از سلوهای مجاور ناشی شوند. عوامل محیطی نیز مثل درجه حرارت و نور نیز در تمایز تاثیر دارند

رشد و تمایز در طول زمان منجر به تشکیل یک موجود زنده با پیچیدگی ساختمانی و متابولیکی می شود. واژه نمو برای بیان فعالیتهای ناشی از رشد و تمایز بکار برده می شود.
از مرحله رویش دانه و تبدیل تخم به موجود کامل 3 فرآیند رخ می دهد:
الف- رشد12 ب- تمایز سلولی13 ج-ریخت زایی14
12 Growth-
13 Cell differentiation-
14 Morphoyenesis-

الف- رشد: رشد را می توان به طرق مختلف اندازه گیری کرد. بستگی به نوع آزمایشها، اطلاعات متفاوتی مورد نیاز است. اندازه گیری هر یک از برگها(طول، عرض و سطح) ، وزن تر، وزن خشک اندامهای گیاه مانند ریشه ها، ساقه ها، برگها و میوه ها، غلظت مواد شیمیایی مختلف، اسیدهای هسته ای، لیپیدها، پروتئین ها، هیدرات کربنها در بافتها و اندامها، داده ها و اطلاعات مربوط به رشد می باشند.

در شاخه علوم کشاورزی از وزن خشک استفاده می گردد، اگرچه در این مورد شکل تغییر و تبادلات آبی نمونه با محیط وجود ندارد و نوسانات آب درنظر گرفته نمی شود، همچنین نشان دهنده کمیت انرژی تثبت شده است اما چون مستلزم تخریب نمونه است در برخی موارد فاقد ارزش است.
ب- تمایز سلولی: تغییرات فیزیولوژیکی و ساختاری در سلولها است و تمایز سلولی لازمه بروز موفوژنز می باشد.

ج- ریخت زایی: منجر به پیدایش ویژگیهای ریختی در بخش های مختلف گیاه می شود.
بنابراین واژه های رشد و نمو و تمایز وقایعی اند که منجر به آشکار شدن اطلاعات ژنتیکی گیاه می شود.
معمولاٌ رشد گیاهان در همه مراحل دوره زندگی ادامه می یابد، گیاه با ساختن اندامهای جدید به رشد خود ادامه می دهد. این اعمال توسط مریستم ها انجام می شود که دو نوع رشد را حاصل می کند:
رشد اولیه15 2-رشد ثانویه16
15 Primary growth-
16 Secondary growth

مریستم ها
مریستم ها مناطقی هستند که تقسیم سلولی در آنها صورت می گیرد و همواره با مناطق توسعه و تمایز سلولی مرتبط می باشند. این سلولها دارای هسته درشت، میتوکندریهای مشابه،واکوئلهای بسیار کوچک و دیواره اسکلتی و نازک پکتوسلولزی می باشند.

الف- مریستمهای اولیه(نخستین):
در بخش های انتهایی ساقه و ریشه وجود دارند. براثر تقسیم سلولی این مناطق توده های سلولی بوجود می آید که این توده ها طرح اولیه ریشه و ساقه را بوجود می آورند.
این مریستمها اندام زا 17 هستند و مسئول رشد طولی ساقه و ریشه می باشند. ساختمان حاصل از این مریستم ها را ساختمان اولیه 18 می نامند.
17 Organogen
18 Primary structure-

ب: مریستمهای ثانویه(پسین)
): باعث رشد قطری گیاه می شوند و کامبیوم19 نام دارند. بر اثر تقسیم سلولهای مریستمی این مناطق توده های سلولی حاصل می شود که مستقیماٌ می توانند به بافت های مختلف متمایز شوند و این مریستم ها بافت زا20 هستند. کامبیوم آوندها تولید آوندهای چوب و آبکش جدید را باعث می شود و کامبیوم چوب پنبه زا، چوب پنبه تولید می کند (شکل 7- 1).
19 Cambium-
20 Histogen-

در نتیجه فعالیت مریستم های ثانویه، ساختارهای پسین حاصل می شود. مریستم های ثانویه در نهانزادان آوندی و در دولپه ایها مسئول رشد قطری بوده و ویژه گیاهان چوبی هستند ولی رشد اولیه عمومی تر بوده و تولید اندامهای قابل انعطافی می کند که به گیاهان منظره علفی می دهد.

اندازه گیری رشد
از رشد به عنوان افزایش دائمی اندازه یافت می شود. البته اندازه به تنهایی نمی تواند به عنوان شاخص رشد درنظر گرفته شود. معیارهای اندازه گیری رشد بر حسب زمان تعیین و به صورت منحنی نشان داده می شود، رشد برحسب تغییر معیار در طول زمان و به صورت منحنی بیان می گردد. با این ترتیب رشد به صورت مدلهای بسیار ساده ریاضی بررسی می شود و امکان مقایسه پارامترهای مختلف را فراهم می گردد. مثلاٌ اگر معیار رشد را با و تغییرات معیار رشد را به نشان دهیم، و تغییرات را در طول زمان بررسی کنیم، سرعت رشد بدست می آید.

اگر نسبت تغییرات معیار رشدی به معیار رشدی اولیه را بررسی نماییم، رشد نسبی را خواهیم داشت و چنانچه نغییرات رشد نسبی به زمان را مورد بررسی قرار دهیم. سرعت رشد نسبی یا نرخ رشد را خواهیم داشت.

شکل 7- 1- جایگاه مریستم های گیاهی

فیزیولوژی بذر
فصل هشتم

مقدمه
دانه ها یک منبع عمده غذایی در اغلب نقاط دنیا هستند. استفاده از گندم برای نان و کشت برنج به وسیله تمدن های قدیمی انجام می گرفت. کشت جو،یولاف و چاودار به زمان های قدیم بر می گردد. امروز، هم غلات یکی از مهم ترین مواد در رژیم غذایی بشر می باشد.در حال حاضر بذر نه تنها منبع غذایی مهم می باشد بلکه به صورت دارو و برخی تولیدات تجارتی به کار می رود.
از برخی بذرها مثل نارگیل- پنبه دانه- ذرت- کتان- کرچک- بادام زمینی روغن استخراج می شود. در حقیقت بذرها بیش از هر قسمت دیگر بوسیله بشر بکار می روند.

فیزیولوژی دانان گیاهی دانه ها را به منظور مطالعه تاثیر عوامل مختلف محیطی مانند درجه حرارت، رطوبت، اکسیژن، نور و سایر عوامل موثر در رویش آنها و ظهور نشا مورد استفاده قرار می دهند.
تا زمانی که گیاهچه قادر به زندگی مستقل و حالت اتوتروف باشد از ذخیره های غذایی به عنوان یک منبع اولیه برای رشد جنین استفاده می کند. قبل از اینکه گیاه گلدار تشکیل دانه دهد، وقایع متعددی رخ می دهد.

دانه از تخمک ایجاد می شود. تخمک در نهاندانگان درون محفظه مسدود تخمدان قرار دارد. در سلول مادر مگاسپور در داخل تخمک یک تقسیم میوز انجام میدهد و چهار مگاسپور ایجاد می شود که هر یک حاوی یک دسته کروموزوم ها پلوئیدند(n). معمولاٌ یکی از آنها مانده تا منجر به تشکیل کیسه جنین شود. هسته داخل کیسه جنینی 3 تقسیم پی در پی انجام می دهد و در نتیجه آن 8 دسته پدید می آید، یک هسته تخمزا، 2 هسته قرینه، 3 هسته متقاطر و 2 هسته قطبی.

دربافت پرچم سلول مادر میکروسپور یک تقسیم میوز انجام می دهد و چهار میکروسپور ها پلوئید ایجاد می شود که تبدیل به دانه های گرده می شود. دانه های گرده روی کلاهه مادگی قرار میگیرند و در آنجا می رویند و لوله های گرده را ایجاد می کنند که رشد می نماید و وارد یک کیسه جنینی می شوند.

در ضمن رویش لوله گرده سلول زاینده تقسیم بندی می شود و در هسته اسپرم ایجاد می شود. پس از نفوذ به داخل کیسه جنینی یکی از هسته های اسپرم با هسته تخمزا ترکیب می شود و زیگوت ایجاد می شود. در حالی که هسته اسپرم دیگر با دو هسته قطبی در داخل کیسه جنینی، متداخل و ترکیب می شود و یک هسته تریپلوئید (n3) را بوجود می آورد.

که تقسیم و منجر به تشکیل آندوسپرم می شود نمو بیشتر زیگوت منجر به تشکیل جنین می شود. این مراحل نمو همراه است با تشکیل آندوسپرم و تغییراتی در بافتهای تخمکی که منجر به نمو و تشکیل آندوسپرم و تغییراتی در بافتهای تخمکی که منجر به نمو و تشکیل پوشش دانه می شود.
بافت آندوسپرم دارای سه دسته کروموزوم (n3) است که دو دسته از کروموزومهای مادری و یک دسته از کروموزومهای پدری را دارا است. ترکیب هسته اسپرم با هسته های قطبی ایجاد اندوسپرم و ترکیب هسته تخمزا با هسته اسپرم تشکیل زیگوت (n2) کروموزومی می دهد.

ساختمان عمومی بذر
یک بذر شامل یک جنین که به وسیله پوشش بذر محاصره شده و حاوی غذای ذخیره شده در بافت آندوسپرم یا در داخل جنین است، می باشد.
پوشش های بذر از پوشش های تخمک ایجاد می شود. در برخی تخمکها یک پوشش وجود دارد بنابراین فقط یک پوشش بذر موجود است پوشش خارجی بذر را تستا می نامند. اگر بذری دارای دو پوشش باشد، پوشش داخلی معمولاٌ بسیار نازکتر از پوشش خارجی است. برخی بذرها دارای پوشش های خشک و سخت هستند که باعث حفاظت از جنین ظریف درون آن می شود.
از قسمتهای داخلی بذر، جنین از شاخص ترین آنها است. جنین گیاه جوانی است که از تخم بارور شده نمو می یابد. در بذر بالغ در حالت استراحت، همیشه در شرایط خفته به سر می برد.
در یک بذر جنین شامل، چهار قسمت مشخص است:
جوانه اولیه
لپه ها
محور زیر لپه
ریشچه
شکل6-2- ساختمان بذر

غذای ذخیره شده بذر ممکن است به شکل آندوسپرم یا کاملاٌ در جنین ، غالباٌ در لپه ها باشد. در بخی بذرها اندوسپرم در بذر موجود نمی باشد و جنین قبل از اینکه بذر برسد آن راکاملاٌ جذب کرده است . این حالت در لگوم ها دیده می شود. در غلات و گراس ها غذا غالباٌ در بافت آندوسپرم ذخیره شده و به وسیله جنین مصرف نمی شود تا اینکاه جوانه زنی آغاز شود.

غذاهای ذخیره شده در بذور شامل کربوهیدرات ها، چربی ها، و پروتئین ها هستند که در هر گونه درصد متفاوتی را به خود اختصاص می دهند. کربوهیدرات ها ممکن است به شکل نشاسته یافت شود. نشاسته در لپه های بذر لگوم و اندوسپرم غلات یافت می شود.

غلات از لحاظ نشاسته غنی هستند. نشاسته ذرت ، نشاسته گندم نمونه هایی از این نوع اند.
چربی ها معمولاٌ به فرم ذرات کروی کوچک روغن وجود دارند. از نظر تولید انرژی در واحد وزن برابر، چربی ها انرژی بیشتری نسبت به کربوهیدراتها آزاد می کنند. در غلات اکثر چربی در جنین وجود دارد. در برخی گیاهان چربی در اندوسپرم نیز موجود است. بذر گیاهانی مانند: سوژا، کرچک، بادام زمینی،آفتاب گردان مملو از چربی می باشد.

پروتئین ها در تمام بذرها وجود دارند. اما برخی مثل لگوم ها بیشتر از دیگر بذور غنی از پروتئین هستند. در غلات پروتئین های ذخیره به صورت گرانول های کوچک به نام دانه های آلورون وجود دارند. از آنجائیکه پروتئین غذاهای مهمی در ساختن پروتوپلاسم می باشد، در طی جوانه زنی بذر برای جنین ضروری هستند.

برای رویش دانه معیارهای زیر باید وجود داشته باشد:
– دانه باید قادر به زیست باشد یعنی جنین زنده باشد و قادر به رویش باشد.
– شرایط محیطی مناسب مانند آب قابل دسترس، دمای مناسب، اکسیژن و نور موجود باشد.
– خواب ابتدایی در دانه برطرف شود.

جوانه زنی و رشد گیاه
در اغلب موارد اولین نشانه قابل دیدن رویش دانه، ظهور ریشچه از پوشش دانه می باشد. در موارد خاص ممکن است اولین علامت قابل ملاحظه ساقه باشد مانند دانه های علف شوره
به دنبال ظهور ریشچه دانه رست به عنوان موجود زنده زیرزمینی که هنوز قادر به فتوسنتز نیست رشد می کند. هنگامی که دانه رست از خاک ظاهر شد، فتوسنتز و رشد فعال آغاز می شود.

مراحل جوانی زنی بذر
جذب آب در طول مرحله جذب آب دو عامل بخودی خود رخ می دهد، جذب آب و تغییر در تنفس در پدیده جوانه زنی دانه ها . جذب آب از الگوی سه مرحله ای که در شکل 3 نشان داده شده پیروی می کند. پتانسیل آب دانه خشک بالغ متجاوز از 100- مگاپاسکال بر اثر پتانسیل ماتریکس می باشد که جذب سریع آب را در طول اولین فاز جذب تقویت می کند.

این مرحله جذب در دانه های زنده و مرده به طور برابر رخ می دهد. پس مستقل از فعالیتهای متابولیکی است. سرعت جذب وابسته به بافت محیط جوانه زنی، در جه تراکم خاک و ارتباط خاک با دانه می باشد. هنگامی که دانه رطوبت را از خاک منتقل می کند، محیط مجاور دانه خشک شده و باید به وسیله آب منافذ مجاور دوباره پر شود. پس این خیلی مهم است که یک بافت خوب مستحکم در ارتباط نزدیک با دانه به منظور نگهداری آب مورد نیاز ثابت در طول دوره جوانه زنی باشد.

در طول مرحله دوم یک سطح هموار در جذب آب وجود دارد زیرا پتانسیل ماتریکس نقش مهمی ایفاد می کند و پتانسیل آب دانه عمدتاٌ بر اثر پتانسیل اسمزی منفی (غلظت محلول) دیواره سلولی در دانه پتانسیل فشار(تورگور) دیواره سلولی که مثبت است می باشد. اگرچه آب جذب شده کمی در طول این مرحله وجود دارد اما یک فاز متابولیسم فعال(سنتز آنزیم) در آماده سازی برای جوانه زنی در دانه های غیر دورمانت یا متابولیسم فعال در دانه های دورمانت یا اینرسی در دانه های مرده می باشد.

مرحله سوم ظهور ناگهانی ثانویه در جذب آب در دانه های بدون دورمانت باظهور ریشچه و طویل شده در نتیجه بزرگ شدن سلولها بیش از تقسیم سلولی، متمایز می شو ند. این امر به وسیله کاهش در پتانسیل آب در دانه بر اثر هیدرولیز ذخایر که منجر به کاهش پتانسیل اسمزی می شود را ترویج می دهد.

در طول این مرحله، چربی ها- پروتئین ها، کربوهیدراتها، مواد شامل فسفر و دیگر مواد ذخیره ای در اندوسپرم، لپه ها و پریسپرم به مواد شیمیایی ساده تر تجزیه می شوند. و به نقاط رشد محور جنینی به منظور رشد دانه است منتقل می شوند.
دانه های خفته ممکن است مرحله دوم فعال داشته باشند، با این حال، مرحله سوم را تحمل نمی کنند. مدت زمان هر یک از این مراحل بستگی به خواص دانه مانند محتوی مواد قابل هیدراته شدن، نفوذپذیری پوشش دانه، اندازه دانه و جذب اکسیژن دارد. به علاوهٍ شرایط در طول آب گیری دانه مانند دما، سطوح رطوبت، فراهم بودن سوبسترا و ترکیبات دیگر تعیین کننده طول هر مرحله می باشند.
شکل6-3- الگوی سه مرحله ای جذب آب در جوانه زنی دانه ها

تغییرات در تنفس
اولین تغییر متابولیکی فابل مشاهده، افزایش سریع در تنفس که کمی بعد از قرار گرفتن دانه در آب رخ می دهد. در طول جذب آب 4 مرحله تنفسی وجود دارد. افزایش ابتدایی سریع در فاز 1 رخ می دهد که باعث فعال سازی و ترکیب با آب آنزیم های میتوکندریایی می شود. در مرحله 2 سطح همواری در تنفس دیده می شود که نتیجه وجود کم اکسیژن در دانه که به وسیله پوشش دانه حرکات هوا از خارج محصور کرده، بنابراین تنفس بی هوازی را ترویج می هد. در مرحله 3 یک حرکت تند ناگهانی ثاونویه وجود دارد. و تهیه اکسیژن افزایش می یابد و آنزیم های میتوکندری و تنفسی جدیدی در سلولهای تقسیم شده در نتیجه تنفس هوازی کربوهیدراتها ساخته می شود.
در طول فاز 4 کاهش تنفس بواسطه ظهور دانه رست از میان سطح خاک و در نتیجه انجام فتوسنتز دیده می شود

متابولیسم محصولات ذخیره ای و انتقال آنها
دومین تغییری که به آسانی در طول جوانه زنی قابل مشاهده است، تجزیه مواد ذخیره به وسیله آنزیم های دانه است. سه نمونه تغییرات در طول فرآیند جوانه زنی روی می دهد:
– تجزیه مواد ذخیره در دانه.
– انتقال محصولات تجزیه شده از یک قسمت به قسمت دیگر دانه
– سنتز مواد جدید از محصولات تجزیه شده.

پیش از ظهور دانه رست فقط آب و اکسیژن مواد جذب شده به وسیله دانه می باشند. در طول مراحل اولیه روش دانه کاهش وزن خشک بر اثر اکسیداسیون روی می دهد. افزایش وزن خشک در زمان ظهور ریشه اغاز می شود، و گیاه جوان قادر به جذب مواد معدنی می باشد و راهش را به سوی خاک برای قرار گرفتن در معرض نور و در نتیجه فتوسنتز باز می کند. مواد معدنی عمده ذخیره در دانه ها، چربی ها و کربوهیدرات ها هستند.

مواد معدنی دیگری در دانه های خشک وجود دارند. تغییرات متابولیسمی که در مراحل اولیه جوانه زنی رخ می دهد به علت آنزیم های متفاوت که نشاسته، پروتئین ، پلی فسفات و لیپیدها و دیگر مواد معدنی ذخیره ای را تجزیه می کند.
بعد از تجزیه مواد ذخیره به مواد شیمیایی ساده تر، از آندوسپرم به جنین یا لپه ها به نقاط رویش دانه منتقل می شوند.

ظهور ریشچه و رشد دانه رست
دومین حرکت ناگهانی جذب آب در طول آب نوشی به وسیله کاهش پتانسیل اسمزی ناشی از هیدرولیز موا ذخیره ای روی می دهد.
افزایش جذب آب مصادف با ظهور ریشچه است که از این قسمت تهیه آب و مواد برای رشد دانه رست امکان پذیر می شود.

تکوین دانه رست با تقسیم سلولی در دو انتهای محور جنین آغاز می شود. سپس ساختارهای آن توسعه می یابند. جنین دارای یک محور، لپه در قاعده جایی که ریشچه ظاهر می شود، وجود دارد. برگچه ها نقاط رویش ساقه که در انتهای فوقانی محور جنین هستند که بالای لپه ها واقع شده اند. ساقه به قسمت هیپوکوتیل که زیر لپه ها و قسمت اپی کوتیل که بالای لپه ها است تقسیم می شود.

هنگامی که رشد دانه رست آغاز می شود افزایش در وزن تر و خشک با کاهش در وزن مواد ذخیره ای مشاهده می شود. جذب آب پیوسته افزایش می یابد و ریشه های جدید شروع به رشد و تهیه آب و مواد معدنی برای گیاه جوان می کنند.گیاهان در دو راه ذخایرشان را انبار می کنند، در دو لپه ایها، لپه ها به عنوان منبع بافت ذخیره ای عمل می کنند، در صورتیکه تک لپه ها اندوسپرم را استفاده می کنند.
رشد اولیه در دانه رست دولپه ها دو الگوی رشد دنبال می کند:روزمینی و زیرزمینیدر رویش روزمینی هیپوکوتیل طویل شده و لپه ها را روی زمین می آورد در حالیکه رویش زیر زمینی لپه ها زیر سطح خاک باقی می ماند.
ساختار ظاهر شده از پوشش دانه کولئوپتیل و کولئوریزا است که مانند پوشش محافظ عمل می کند ضمن رویش مراحل زوانه زنیف اولین برگ و ریشچه از این ساختار خارج و تولید ساقه و ریشه می کند.
شکل6-4- مراحل رویش دانه اپی ژه(دانه لوبیا).

شکل6=5- مراحل رویش دانه هیپوژه (دانه نخود

بررسی های موجود نشان میدهد که مواد رشد گیاهی تنفس مخصوصی در جوانه زنی دانه ایفاد می کند. رویش دانه در تک لپه ایها: لپه در این گیاهان به شکلهای مختلف درمی آید اما نقش آن در همه حال رساندن مواد غذایی دانه به رویان است. شکل 6 -6 مراحل رویش در یک دانه تک لپه (ذرت) را نشان می دهد. دانه ذرت دارای نیامهایی است که در ابتدای مرحله رویش، ریشه و ساقه جوان را در خود محفوظ نگه می دارند. نیامهایی که ساقه و برگ اولیه را در خارج از خاک دربر می گیرد کولئوپتیل و نیامی که ریشه نورسته را در خود نگه می دارد کولئوریز نام دارد. این نیامها چندان رشدی ندارند و در مراحل اولیه رشد گیاه نورسته پاره شده، و ریشه و ساقه از آنها خارج می شود.
شکل 6- 6 مراحل رویش دانه در ذرت

جیبرلین: جیبرلین اغلب در کنترل و پیشرفت جوانه زنی مستقیماٌ دخالت دارند. اسید آبسیزیک بازدارنده جوانی زنی دانه هاست.
سیتوکیین: سیتوکیین ها نقش تنظیمی در جوانه زنی دانه دارند. در دانه های Cicer arietinumr محور جنینی برای لپه های به مدت 12 ساعت بعد از شروع آب نوشی سیتوکینین تهیه می کند.
اتیلن: اتیلن باعث جوانه زنی دانه می شود.

رویش دانه (Seed Germination ) قوه نامیه دانه ها (Seed Longevity )

طول مدتی که جنین ها می تواند قدرت رویش خود را حفظ کنند، طول عمر آنها نامیده می شود و دانه های مختلف متفاوت است ممکن است از چند روز تا چندین سال متفاوت باشد. این قدرت رویش وابسته به عوامل محیط خارجی است که دانه پس از بلوغ در معرض آنها قرار می گیرد.

بذرهای نارس یا بذرهایی که بر روی گیاهان ضعیف تولید می شوند در ذخایر غذایی ذخیره شده اغلب کمبود دارند و در طرق دیگر ممکن است به ترتیبی ضعیف گردند که قوه نامیه آنها کاهش یابد هنگامی که این بذر کاشته شود معمولاٌ منجر به تولید گیاه ضعیف می کند، حرارت و شرایط دیگر که بذر تحت تاثیر آنها بر روی گیاه توسعه می یابد نیز بر روی قوه نامیه آنها اثر می گذارد. بسیاری بذور قوه نامیه خود را تحت شرایط نسبتاٌ خشک و تحت حرارت متوسط تا کم به بهترین وجه حفظ می کنند.

وقتی بذر خشک باشد آن را می توان در معرض حرارت های بسیار کم یا نسبتاٌ زیاد قرار داد بدون اینکه قوه نامیه آنها از بین برود.
بر اساس مطالعات صورت گرفته بذرهای گیاهان زراعی تحت شرایط یکنواخت و ترجیحاٌ در حرارت و رطوبت نسبتاٌ کم ذخیره گردند قوه نامیه شان را به بهترین وجه حفظ می نمایند. از سوی دیگر بذر برخی درختان مانند بید،افرا اگر خشک شوند می میرند.

عوامل محیطی موثر بر جوانه زنی
عوامل محیطی اثرات متعددی بر رویش دانه می گذارد. تعدادی عوامل محیطی عمده به شرح زیر می باشند.

آب
آب مهمترین عامل شروع جوانه زنی دانه و بقای دانه رست در هنگام ظهور آن می باشد. پتانسیل اسمزی در محیط خاک وابسته به حضور نمکها می باشد.
در شرایط شوری زیاد نمک ایجاد سمیت می کند و پتانسیل اسمزی خاک را خیلی منفی می کند، در نتیجه باعث کاهش جذب آب و جلوگیری از جوانه زنی می کند و باعث کاهش مقاوت دانه رست می شود.

کمبود آب خاک در طول فرآیند جوانه زنی می تواند درصد جوانه زنی بر اثر استرس آبی را کاهش دهد. ذخایر غذایی اغلب اوقات بصورت یک فرم غیرقابل حل می باشند قبل از مصرف بوسیله جنین باید به صورت قابل حل و قابل انتشار درآیند. این فرآیند هضم نام دارد. پس تهیه آب برای بذر از اهمیت اولیه جوانه زنی برخوردار است.

دما
حرارتی که برای جوانه زنی بذور مورد نیاز است برای انواع بذرهای مختلف متفاوت است. دما سرعت جوانه زنی، درصد جوانه زنی و متعاقب آن رشد دانه رست را تنظیم می کند. عموماٌ سرعت جوانه زنی در دماهای پائین کاهش می یابد اما به محض افزایش دما تا رسیدن به سطوح بهینه افزایش می یابدو تمام بذرها دمای حداقل، حداکثر و بهینه برای رویش دارند. اما این دماها بین گونه های مختلف متفاوت است.
دمای حداقل کمترین دمایی است که اجازه جوانه زنی به دانه را می دهد. در حالیکه دمای حداکثر، بیشترین دمایی که در آن جوانه زنی رخ می دهد. دمای بهینه درجه حرارتی است که بیشترین درصد جوانه زنی با حداکثر سرعت صورت گیرد.

بذور گونه های مختلف از نظر دمایی به چندین گروه تقسیم می شوند:
مقاوم به دمای سرد در دماهای حدود 5/4 درجه سانتیگراد جوانه می زنند اما در دماهای بالاتر هم می رویند مانند کاهو،هویج، بروکلی.
دانه های نیازمند دمای سرد مانند پامچال در دمای بالاتر از 25 درجه سانتیگراد جوانه می زنند.

دانه های نیازمند دمای گرم حساس به دمای سرد در محدوده بین 10 تا 15 درجه سانتیگراد هستند مانند گوجه فرنگی، لوبیا، بادمجان.
دماهای متناوب برای برخی از دانه ها مورد نیاز است. نوسان دمای شب- روز (اغلب یک اختلاف 10 درجه سانتیگراد) برای جوانه زنی بهینه و رشد مورد نیاز است

مقدار اکسیژن
تنفس عبارت است از اکسیداسیون غذا به عنوان منبع ضروری انرژی برای حفظ زندگی هنگامی که جنین رشدش را از سر می گیرد، انرژی بسیار زیادتری نیاز است و از اینرو تنفس افزایش می یابد. به منظور بدست آوردن جوانه زنی سریع تبادل گاز در محیط جوانه زنی ضروری است. اکسیژن برای تنفس و پدیده جوانه زنی دانه لازم است و حدود %21 مورد نیاز دانه است. البته بسته به گونه های مختلف نیاز به اکسیژن هم متفاوت است و برخی قادرند در محیط با میزان اکسیژن کمتر رشد کنند.

نور
نور اهمیت ویژه ای در پدیده جوانه زنی دارد. محقق آلمانی کینزل دریافت که 965 گونه گیاهی مورد مطالعه، نور جوانه زنی بذور 672 گونه ممکن کمک کرده و از جوانه زنی 258 گونه جلوگیری کرده و 35 گونه نسبت به نور بی تفاوت بودند.
وقتی یک دانه آبنوشی شده در معرض نور قرمز(670-660 نانومتر) قرار گیرد فیتوکروم(P) به (Pfr) که منجر به پیشبرد جوانه زنی می شود، تغییر می کند. در صورتیکه در معرض قرار گرفتن در برابر نور مادون قرمز(800-760 نانومتر) باعث ممانعت از جوانه زنی می شود.

این تغییرات بسیار سریع و چندین بار است که بر اثر آخرین تیمار موثر رخ می دهد .
گاهی اوقات برای سرعت بخشیدن به عمل جوانه زنی دانه، پیش از کشت آنها را می خیسانند.
اغلب گونه های گیاهی هنگامی که برای مدتی خیسانده می شوند، اثر بهتری را هنگام جوانه زنی نشان می دهند. اما باید توجه داشت که اگر دوره خیساندن طولانی شود ممکن است اثرات نامطلوبی بر اثر آسیب دانه شود.

مواد سمی و بازدارنده
ترکیبات مختلف بر جوانه زنی دانه موثرند. مثلاٌ غلظتهای کم سیانید(CN-)، باعث مسمویت و از بین رفتن جنینهای در حال رشد می شود. همچنین اگر غلظتهای زیاد نمک در تماس با دانه باشد دانه قادر به جذب رطوبت کافی و شروع جوانه زنی نمی باشد و اگر ریشچه موفق به خروج از پوست دانه شود، ممکن است بافت جنینی خشک و کشته شود.

عصاره های میوه و برگها و شاخه ها یا ریشه ها نیز منجر به توقف رویش دانه می شوند . در برخی موارد مشاهده شده که این عصاره ها اثر اسمزی مشابه اثر غلظت زیاد نمک معدنی دارند. همچنین برخی علف کش ها برای جلوگیری از رشد علفهای هرز، استفاده می شوند مانع رویش دانه خواهند شد. برخی از دانه ها به موادی مانند املاح فلزات(جیوه، سرب، نقره،…) اسیدها و بازها حساسند و در این محیطها رویش نمی کنند

خواب(دورمانسی) Dormancy
بذرهای اغلب گیاهان بعد از بلوغ اگر رطوبت کافی ، دما و در معرض نور و یا تاریکی لازم قرار گیرند قادر به رویش می باشند. اما دانه های گروهی از گیاهان اگر تحت شرایط رطوبت، مناسب، اکسیژن و دمای کافی قرار گیرند به سرعت جوانه نمی زنند و ممکن است رویش آنها مدتی به تعویق بیافتد.

در اصطلاح گفته می شود دانه های این گیاهان در حال خواب(دورمانت) هستند. همه بخشهای دانه، شامل پوششهای دانه، اندوسپرم و خود جنین ممکن است مسئول توقف رشد جنین باشند. علل وعواملی که منجر به خواب می شود کاملاٌ پیچیده است و عوامل محیطی داخلی در آن تاثیرگذار هستند.

برای جوانه زنی ابتدایی:
1-دانه باید قادر به زیست باشد.
2- دانه باید در معرض شرایط مناسب باشد.
3- خواب اولیه برطرف شده باشد.
– برای تشخیص بین خواب که توسط شرایط داخلی یا خارجی بوجود آمده دو اصطلاح را می توان بکار برد:سکون، شرایطی که دانه یا جوانه تحت کنترل خارجی باشد(شرایط خارجی مثل تهیه آب، دما یا شرایط محیطی ممکن محدود باشند). و استراحتشرایطی که دانه یا جوانه تحت کنترل داخلی هستند(عوامل داخلی از رشد حتی بواسطه شرایط محیطی مساعد ممانعت می کنند).

پیشرفت ، نگهداری و رها شدن از خواب فرآیند خیلی پیچیده ای است اما سوالی که پیش می آید این است که عمل دانه تشکیل گیاه جدید و تشکیل ساقه است. پس چرا خواب ایجاد می شود و این فرآیند یک عمل پیچیده است. جواب ساده است چون در بسیاری از حالات به سود دانه نیست که جوانه بزند بنابراین، خواب به عنوان مکانیسم بقا عمل می کند.
خفتگی اولیه: بدون تیمار خاص و از ابتدا جنین خفته است و قادر به رویش نمی باشد.
خفتگی ثانویه: جنین قادر به رویش می باشد اما تحت تاثیر عوامل محتلف این استعداد را از دست می دهد.
بیشتر مطالعات خفتگی به خانواده رزاسه و گرامیناسه صورت گرفته است.

خواب اولیه دانه
خواب فیزیکی(خواب پوشش دانه): این نوع از خواب بوسیله پوشش دانه که مانع از سرایت آب شده، حاصل می شود. و یک مکانیسم محافظتی که دانه را در شرایط خشکی و تحت آب و هوای گرم ایمن نگه می دارد. در این دانه ها جوانه زنی به طور مصنوعی با ایجاد شکاف در پوشش دانه و ورود آب به داخل برطرف می شود.

در طبیعت پوشش دانه به وسیله میکروارگانیسم ها، عبور از دستگاه هاضم پرندگان و حیوانات و یا خراش مکانیکی یا یخ زدن و آب شدن متناوب و در برخی گونه ها بوسیله آتش نرم می شود. خانواده های گیاهی که خفتگی فیزیکی یا خوص ژنتیکی دارند شامل لگومینوزاسه، مالواسه، کاناسه، گرنیاسه، کنوپودیاسه، کونولولاسه و سولاناسه می باشند.

خواب مکانیکی: به وسیله ساختار که دانه را محاصره کرده و قویتر از آنی است که اجازه توسعه جنین را بدهد حتی اگر آب بتواند نفوذ کند. جوانه زنی به طور مصنوعی به وسیله شکاف ساختارهای پوشش جنین یا به طور طبیعی به وسیله میکروارگانیسم های خاک رخ می دهد. مثالهایی از این خفتگی در زیتون، گردو و میوه های هسته دار وجود دارد.

خفتگی شیمیایی: این خفتگی به وسیله بازدارنده های جوانه زنی که در میوه و پوشش دانه در طول دوره تکوین تجمع می یابند، حاصل می شود. پولی گوناسه، کنوپودیاسه، ویولاسه از این نمونه اند.
خفتگی موروفولوژیکی: وقتی دانه ها از گیاه مادری جدا می شوند.جنین آنها کاملاٌ تکوین نیافته است. و باعث خفتگی جنین می شود و علت این خفتگی می تواند به دو صورت باشد.

جنین ناقص که پیش رویان درون اندوسپرم فرورفته مانند خانواده را نانکولاسه(شقایق و آلاله)، پاپاوراسه(خشخاش) یا جنین های تکوین یافته که اژدری شکل هستند و نیمی از حفره دانه را پر می کند، مانند خانواده اومبلیا فراسه(هویج)، خانوداه پریمولاسه(پنجه مریم).
خفتگی مورفولوژیکی با قرار دادن دانه ها در برابر دما که برای توسعه جنین مطلوب است یا تیمار با مواد شیمیایی مثل نیترات پتاسیم یا اسید جیبرلیک از بین می رود.

خفتگی فیزیولوژیکی: این خفتگی با مواد رشد گیاهی و عوامل محیطی مثل نور و دما کنترل می شود. این خفتگی به وسیله قراردادن دانه ها در معرض سرما و دماهای متناوب و تیمار با جیبرلیک اسید از بین می رود.
خواب ثانویه: این خفتگی به عنوان یک مکانیسم ایمنی برای دانه هایی است که آبنوشی شده اند اما شرایط محیطی مناسب برای جوانه زنی آنها وجود ندارد.
دماهای نامطلوب بالا و پائین، تاریکی ممتد، نور سفید ممتد، نور مادون قرمز ممتد، تنش آبی و بی اکسیژنی موجب تقویت خفتگی ثانویه می شوند.

اثر عوامل محیطی
نور و دما مهمترین عوامی محیطی کنترل خفتگی می باشد.
مقدار سرمای لازم برای شکستن خفتگی بستگی به گونه ها و گاهی واریته گونه ها دارد. علاوه بر خفتگی اولیه، خفتگی ثاونویه، می تواند در صورت شرایط دمای نامطلوب خیلی زیاد و یا خیلی کم القاء شود. دانه های گونه های مختلف هم نسبت به نور عکس العمل های متفاوتی نشان می دهند که می توان آنها را به 3 دسته تقسیم کرد:

دانه هایی که در معرض نور قرار می گیرند از رویش آنها جلوگیری می شود.(دانه های فتوپلاستیک منفی) این دانه ها برای رویش نیاز به تاریکی کامل دارند.
دانه هایی که بوسیله نور تحریک به رویش می شوند(دانه های فتوپلاستیک مثبت).
دانه هایی که هم در تاریکی و هم در نور می رویند(دانه های غیرپلاستیک

تاثیر نور در رویش دانه بر روی یک ملکول پیگمان که فیتوکروم نام دارد اعمال می شود. این پیگمان تحت عوامل مختلفی از جمله درجه حرارت، رطوبت، سن دانه و میزان تابش نور تغییر می کند. هنگامی که فیتوکروم در معرض تابش نور قرار می گیرد نسبتی از فرم های Pr به Pfr وجود دارد، مثلاٌ هنگامی که در معرض تابش نور قرمز (660نانومتر) 81 درصد به شکلPfr و 19 درصد به شکلPr است.
اگر نور قرمز دور (730نانومتر) به فیتوکروم بتابد 98 درصد به فرم Pr و 2 در صد به فرم Pfr است. فیتوکروم Pfr در تاریکی به تدریج به Pr تبدیل می شود و Pfr فرم فعال فیتوکروم است.

فرم Pfr از طریق واکنش با یک ملکول دیگر [X] به صورت پایدار [PfrX] در می آید و باعث رویش دانه می شود.
در ضمن نمودانه فیتوکروم در گیاه والد ساخته می شود و عقیده بر آن است که در داخل غشاها قرار می گیرند. در ضمن نمو دانه فیتوکروم قابل تبدیل به دو فرم مختلف است. در ضمن مرحله خشک شدن نمو دانه فیتوکروم با مقدار معینی از نسبت Pr به Pfr به صورت ساکن و غیرمتحرک وجود دارد، بعد از آبنوشی، سطح غشاها و فیتوکروم آبدار شده و پتانسیل لازم برای فعالیت متابولیکی ایجاد می کند و فیتوکروم مراحل فیزیولوژیکی و بیوشیمیایی را که منجر به رویش دانه می شود آغاز می کند.

این طور به نظر می آید که فتوپریود شاید تنها عاملی نباشد که باعث آغاز نگهداری و شکستن خواب می شود. بلکه بین دما و فتوپریود عمل متقابل وجود دارد. در برخی موارد، روزهای طولانی می تواند جانشینی برای نیاز سرمایی باشد و اثرات فتوپریودهای القایی می تواند به وسیله دماهای کم بی اثر شود. علاوه بر خفتگی اولیه، تاریکی ممتد، نور سفید و نور قرمز دور می توانند در برخی گیاهان باعث خفتگی ثانویه شوند.

فصل نهم
مواد تنظیم کننده رشد گیاهان

ساختمان و اثرات فیزیولوژیکی
گیاهشناسان سالهای متمادی علاقه مند به پی بردن به این نکته بوده اند که گیاهان چگونه فرمها و اشکال مشخص خود را به دست می آورند. در اواسط قرن 18 فیزیولوژیست گیاهی مشهور آلمانی ژولیوس وان ساکس چنین اظهار نظر کرد که شکل و فرم گیاهان از طریق عمل مواد ویژه " ایجاد کننده اندامها " مانند " ایجاد کننده برگها " مواد " ایجاد کننده ریشه ها " و مواد " ایجاد کننده گلها " حاصل می شود . کوششهای اولیه برای جداسازی و تشخیص هویت مواد مزبور موفقیت آمیز نبود و نظرات ساکس توسط سایر گیاهشناسان همزمان با او قویا مورد حمایت قرار نگرفت ،

یک نظریه دیگر که ( در آن زمان) بیشتر مورد قبول بود اظهار می داشت که فرم و شکل گیاه از وجود و تامین مقادیر معین مواد آلی تشکیل دهنده (پیکره گیاه) مانند ئیدارت های کربن ، ازت محلول، پروتئین و یا سایر مواد نتیجه می شود . این نظر پس از انجام مطالعات بر روی ترکیب شیمیایی گیاهان در مراحل مختلف نمو و هنگامی که گیاهان ( مورد مطالعه) در شرایط مختلف از نظر میزان مواد غذایی معدنی ، نور و درجه حرارت پرورش داده شدند پذیرفته شد.

در آن هنگام ، کنجکاویهای زیادی در زمینه استخراج و جداسازی و تشخیص هویت مواد تشکیل دهنده ( پیکره گیاهان) به عمل می آمد . ترکیباتی مانند نشاسته ، ساکارز ، گلوکز ، فرکتوز ، اسیدهای آلی ، اسیدهای آمینه ، پروتئین و اسید های هسته ای در گیاهان کشف شد و روشهایی نیز برای تجزیه آنها تدوین و ارائه شد.
کارهای بعدی نشان داد که دو نظریه ای که قبلا اشاره کردیم کاملا انحصاری نیستند .

نظر ساکس درباره مواد ایجاد کننده اندامهای گیاهی چنین بود که گیاهان دارای موادی هستند که مراحل بیوشیمی را آغاز می کنند و این مراحل بنوبه خود سرانجام منجر به ایجاد و تشکیل اندامهای گیاهی و یا سایر جنبه های رشد گیاهان می شود . گروههای متعدد و مجزا و مختلفی از ترکیبات آلی بعنوان مواد آغاز گر ( مراحل رشد و نمو گیاهان) شناخته شده اند که عبارتند از : آکسین ها ، جیبرلین ها ، سیتوکینین ها ، و ترکیبات فنلی . بعلاوه ترکیبات متعدد و مخصوص دیگری مانند اتیلن و اسید ابسیزیک نیز در گیاهان کشف شده اند . ساختمان شیمیایی نمونه هایی از این ترکیبات در شکل 9-1 نشان داده شده است.

به استثنای اتیلن ، همه آن ترکیبات دارای حلقه های کربنی با درجه پیچیدگی متفاوت هستند . اسید ایندول -3- استیک و سیتوکینین ها حاوی ازت هستند در حالی که جیبر لین ها ، ترکیبات فنلی و اسید ابسیزیک تنها از کربن و هیدروژن و اکسیژن تشکیل شده اند.
احتمالا سایر مواد رشد گیاهی که دارای فعالیت تنظیم کنندگی رشد هستند نیز در گیاهان کشف خواهند شد زیرا عصاره های بافتها و اندامهای گیاهی استخراج شده و نقش آنها در تغییرات مربوط به رشد و شکل و فرم گیاهان نشان داده شده است.

ماهیت شیمیایی مواد فعال موجود در این عصاره های هنوز کشف نشده است .
مواد آغاز کننده ( مراحل رشد و نمو) که بعنوان هورمون های گیاهی ( فیتو هورمون) نامیده می شوند ، فعل و انفعالات بیوشیمیایی را آغاز می کنند و سبب ایجاد تغییرات در ترکیب شیمیایی داخل گیاه می شوند .

همراه با این تغییرات در ترکیب شیمیایی گیاه ، تغییراتی نیز در رشد گیاه به وجود می آید که منجربه تشکیل ریشه ها ، ساقه ها ، برگها ، گلها و سایر بخشهای اختصاصی گیاه می شود . عوامل محیطی مانند نور و درجه حرارت در ضمن مراحل رشد و تمایز ، بر هورمون های گیاهی و مراحل بیوشیمیایی گیاهی تاثیر دارند.
تحقیقات و تجربیات چارلز داروین و پسرش فرانسیس در انگلستان خطوط تحقیقی متعددی را آغاز کرد که سرانجام بسیاری از عقاید اولیه ساکس مورد تایید قرار گرفت .

داروین به حرکات گیاهی علاقه مند بود که متداولابه آنها تروپیسمها ( حرکات از پیش تعیین نشده) گفته می شود و در پاسخ و عکس العمل به محرکهای خارجی مانند نور ( فتو تروپیسم– نور گرایی) ، نیروی جاذبه و ثقل زمین ( ژئو تروپیسم زمین گرایی ) ، تماس ( تیگما تروپیسم) ، و مواد شیمیایی ( شیمو تروپیسم ) در گیاهان ایجاد و مشاهده می شود.

داروین همچنین پدیده سرکومنو تیشن یعنی حرکات چرخشی و پیچش ساقه ها را بررسی و تحقیق کرد . داروین در مطالعاتش در زمینه نور گرایی در گیاهان ، غلاف ساقه تعدادی از علفها را به عنوان ابزار آزمایش به کار برد . هنگامی که دانه های گیاهان در تاریکی روییدند ، کولئو پتیلها بطور مستقیم ( عمودی ) رشد کردند. هنگامی که کولئو پتیل در معرض تابش نور بطور یکطرفه قرار گرفت ، به طرف نور خم شد. داروین متوجه شد هنگامی که بخش پایین و قاعده ای ( نه نوک ) کولئوپتیل در معرض تابش نور واقع شود در کولئو پتیل خمیدگی ایجاد نمی شود. همچنین اگر نوک کولئو پتیل توسط یک کلاهک غیر قابل نفوذ نسبت به نور پوشانیده شودو سپس از یک جانب در معرض تابش نور واقع شود در این حالت نیز در کولئو پتیل خمیدگی ایجاد نمی شود (شکل 9-2). مشاهدات داروین در سالهای دهه 1870 صورت گرفت و در اوایل دهه 1900 فیزیولوژیستهای گیاهی مجددا مساله نور گرایی ( فتو تروپیسم ) را مورد توجه قرار دادند در سال 1907 فیتینگ نشان داد که بریدگی و ایجاد شکافهای جانبی در بخش پایینی و قسمت زیرین نوک غلاف ساقه سبب ممانعت از خمیدگی آن به طرف منبع نور نمی شود. بویسن جنسون نشان داد که اگر نوک یک کولئوپتیل قطع شود و سپس یک لایه ژلا تین یا آگار بین نوک و محل قطع شده کولئو پتیل قرار داده شود ، کولئوپتیل به رشد خود ادامه می دهد .
شکل 9-1: برخی از مواد داخلی رشد گیاهی

در حالی که اگر یک ماده غیر قابل نفوذ نسبت به آب ، مانند میکا یا یک ورقه نازک سرب بین نوک و محل قطع شده کولئو پتیل قرار داده شود ، رشد در بخش زیرین نوک کولئو پتیل تسریع و در نتیجه ، خمیدگی ایجاد می شود.
سپس ونت این واقعیت را کشف کرد که نوکهای کولئوپتیل حاوی ماده ای است قادر به تسریع و تشدید رشد طولی کولئو پتیلهای قطع شده است. ونت در تحقیقات خود از کولئوپتیلهای نشاهای یولاف (Avena sativa ) استفاده کرد ، ولی کولئوپتیلهای سایر نشا های گیاهان علفی ( گندم ،ذرت، و غیره) نیز مورد مطالعه قرار گرفته اند. ونت نوک کولئو پتیل هایی را که در تاریکی رشد کرده بودند قطع کرد و آنها را در تاریکی روی ورقه هایی از ژلاتین یا آگار قرار داد و چندین ساعت در همان وضعیت به حال خود باقی گذاشت . همه مراحل بعدی آزمایش نیز در تاریکی انجام شد .
شکل 9-2: اثر فتوپریودیسم بر ساقه گیاهان

سپس نوکهای کولئوپتیلها را از روی ورقه های آگار برداشت و ورقه ها را به قطعات مکعب شکل کوچکی تقسیم کرد . هنگامی که قطعات مکعبی مزبور روی محل قطع شده یک کولئو پتیل بمدت چند ساعت قرار داده شوند ، سرعت رشد طولی کولئو پتیل نزدیک به سرعت رشد طولی یک کولئو پتیل سالم و قطع شده است ، این امر بیانگر آن است که نوکهای کولئوپتیل ها حاوی یک ماده نافذ است که قادربه تحریک رشد طولی بخش تحتانی و قاعده کولئو پتیلهاست. ونت همچنین نشان داد که اگر یک مکعب آگار حاوی ماده نافذ نوک کولئوپتیل بطور نامتقارن روی مقطع یک تنه کولئوپتیل چند ساعت قرار داده شود ، کولئوپتیل همان طور که رشد می کند خمیده می شود و درجه خمیدگی متناسب است با غلظت ماده رشد موجود در مکعب آگار .

این مشاهده و آزمایش اساس روش اندازه گیری فعالیت اکسین ، یعنی آزمایش کولئو پتیل یولاف است، که ونت انجام داده است. اسید ایندول استیک (IAA ) از نوک کولئوپتیل ها استخراج شده است( مقدار یک میکرو گرم از 10000 نمونه نوک کولئوپتیل ) . مقادیر قابل تشخیص IAA تنها از تعداد معدودی گیاهان استخراج شده است ، ولی شواهد آزمایشی کروماتوگرافی نشان می دهد که این ماده بطور گسترده و وسیعی در گیاهان در سلسله گیاهی وجود دارد.
در روشهای سنجش حیاتی دیگر می شود به کار برده می شود . اسید ایندول استیک یک آکسین است که بطور طبیعی در گیاهان وجود دارد.

اثرات فیزیولوژیکی آکسینها
اسید ایندول استیک و سایر آکسینها در تعدادی از جنبه ها و مراحل نمو گیاهی شرکت دارند. برخی از اثرات مهم آنها بطور اختصار شرح داده می شوند .
بزرگ شدن یاخته ها : مطالعات اولیه بر روی رشد کولئوپتیل نشان داد که و سایر آکسینها بزرگ شدن یاخته ها را تحریک و تشدید می کنند . رشد طولی کولئو پتیل ها و ساقه ها در نتیجه بزرگ شدن یاخته ها انجام می شود. یک توزیع نامساوی IAA در ساقه ها و ریشه ها سبب اختلاف در میزان بزرگ شدن یاخته ها ( در قسمت های مختلف ساقه ها و یا ریشه ها ) می شود و همراه با آن در اندام مربوط خمیدگی ایجاد می شود ( مانند ژئوتروپیسم و فتوتروپیسم ) . یاخته مریستمی در بافت کالوس و یا در محیط های مخصوص کشت افت های گیاهی نیز تحت تاثیر IAA قرار گرفته و بزرگ می شوند.

ممانعت از نمو شکوفه های جانبی
نمو شکوفه ها ( جوانه های ) جانبی را آکسین تولید شده در مریستم انتهایی که بعدا به طرف پایین ساقه منتقل می شود متوقف می کند . اگر منبع تولید آکسین را از طریق قطع کردن ( بریدن) مریستم انتهایی از روی ساقه برداریم در این صورت شکوفه های جانبی از قید حالت بازدارندگی اکسین رها می شوند و نمو خود را آغاز می کنند.
ریزش برگ برگها بر اثر تغییراتی که در خواص شیمیایی و فیزیکی یاخته های منطقه ریزش ( گروهی از یاخته ها در قاعده دمبرگ ) ایجاد می شود از ساقه جدا می شوند. چنین به نظر می رسد که غلظت IAA در یاخته های مجاور و یا داخل منطقه ریزش با مرحله ریزش رابطه دارد.

فعالیت کامبیومی ( Cambial Activity)
رشد ثانوی ساقه ها بر اثر انجام تقسیم سلولی در لایه زاینده ( کامبیوم ) و تشکیل بافتهای آوند چوبی و آوند آبکش است. آکسینها تقسیم سلولی را در ناحیه کامبیوم تسریع و تشدید می کنند.
رشد ریشه: همان طور که قبلا اشاره شد ، بزرگ شدن یاخته ها معمولا بوسیله IAA تحریک و تسریع می شود. در یک محدوده معین از غلظتهای IAA ، میزان بزرگ شدن سلولها متناسب است با مقدار IAA موجود در ریشه ها اثر معمولی IAA ممانعت از بزرگ شدن یاخته ها است ولی تنها در غلظت های خیلی کم و پایین ،IAAاثر تحریک کننده بر بزرگ شدن یاخته ها دارد.
بزودی پس از شناخت اهمیت IAA بعنوان یک هورمون گیاهی ، ترکیباتی که از نظر ساختمانی مشابه آکسینها بودند ، سنتز و ساخته شدند و از نظر خواص و فعالیت بیولوژیکی مورد آزمایش قرار گرفتند.

کشف جیبر لین Gibberellin
تصور می شود که کشف جیبر لین ها قبل از اینکه توسط دانشمندان آمریکایی و انگلیسی در دهه 1950 انجام گیرد ، توسط دانشمندان ژاپنی انجام شده است. مدتهای طولانی بود که شالیکاران آسیایی با نوعی بیماری که در آن گیاهان ارتفاع بلند پیدا نموده ولی دانه ای تولید نمی نمودند آشنایی داشتند بیماری شناسان گیاهی طی تحقیق روی این بیماری دریافتند که گیاه از طریق یک ماده شیمیایی مترشحه از قارچی که گیاه به آن آلوده شده بود به افزایش ارتفاع تحریک شد

این ترکیب شیمیایی از طریق صافی های کشت قارچ جداشده و بعد از نامگذاری قارچ تحت عنوان جیبرلا فوجی کوری، جیبرلین نام گرفت. وزارت کشاورزی ایالات متحده موفق به کشف ساختار موادی شدند که از صافیهای کشت قارچ خالص سازی شده بودند . آنها این ترکیبات را اسید جیبرلیک نامیدند ( شکل 9-1).

به محض دستیابی به اسید جیبرلیک ، فیزیولوژیستهای گیاهی آزمایشات خود را روی این ترکیب و در انواع مختلفی از گیاهان آغاز کردند .واکنشهایی تماشایی در رشد طولی گیاهان پا کوتاه و گیاهان دارای رشد رزت به دست آمد و خصوصا این مساله عموما در گیاهان پاکوتاه نخود ( Pisum sativum )، ذرت پاکوتاه (Zea mays ) و نیز گیاهان رزت یکساله دیده شد.
گیاهانی که به دلایل ژنتیکی ارتفاع خیلی زیادی داشتند هیچ واکنش دیگری به جیبرلین ها نشان ندادند . اخیرا آزمایشاتی که روی ذرت پاکوتاه انجام شده است موید این مطلب بودند که در واقع رشد طولی طبیعی گیاهان تحت کنترل جیبرلین هاست.
در حل حاضر ، متجاوز از 50 نوع GA شناخته شده اند و بیش از 40 نوع آنها در گیاهان سبز وجود دارند.

اثرات فیزیولوژیکی جیبرلین ها
بسیاری از گیاهان به استعمالGA با افزایش قابل ملاحظه طول ساقه شان پاسخ می دهند.
برییان و همینگ متوجه شدند که GA اثر رشدی مختلفی بر روی ارقام قد کوتاه و معمولی گیاه نخود دارد ، به این دلیل که ، هنگامی که روی گیاهان نخود قد کوتاه GA پاشیده شود ، طول میان گرهها افزایش می یابد و ظاهر گیاهان مانند واریته های نخود معمولی قد بلند می شود . در حالی که ، واریته های قد بلند گیاه نخود نسبت به ( استعمال ) جیبرلینها پاسخ و عکس العملی نشان نمی دهند .

گیاه ذرت نیز عکس العمل مشابهی نشان می دهد . حدود 20 رقم گیاه ذرت قد کوتاه وجود دارد که نیمی از آنها نسبت به استعمال GA خارجی عکس العمل نشان می دهند و ارتفاع گیاه افزایش می یابد . هنوز روشن نیست که چرا همه رقمهای گیاه ذرت قد کوتاه نسبت به GA عکس العمل نشان نمی دهند .

دلیلی نداریم تا بر این باور باشیم که صفت قد کوتاه بودن تنها به ( مقدار و غلظت ) GA بستگی دارد ، زیرا ممکن است در میان گیاهان قد کوتاه ، آنهایی که نسبت به GA عکس العمل نشان نمی دهند دارای یک اساس بیوشیمیایی متفاوت برای قد کوتاهی خود باشند.
جیبرلینها علاوه بر اثراتی که روی طویل شدن ساقه دارند ، هنگامی که روی گیاهان سالم پاشیده شوند سبب افزایش سطح برگها در تعدادی گیاهان مختلف نیز می شوند . بطور مشابه ، استفاده از جیبرلینها سبب افزایش اندازه غنچه های گل در گیاهان کاملیا و گل شمعدانی و تعدادی گیاهان دیگر می شود. همچنین پس از پاشیدن GA ، اندازه برخی میوه ها افزایش می یابد ، واریته های متعدد گیاه انگور بطور متداول با جیبرلینها تیمار می شوند تا اندازه میوه هایشان افزایش یابد .

جیبرلینها همچنین تولید میوه های بدون دانه ( پارتنو کارپیک را در تعدادی از گیاهان تحریک می کنند . چنین میوه هایی معمولا بی دانه اند. جیبرلیها علا وه بر تاثیر در اندازه اندامها ، روی سایر عکس العمل های گیاهی نیز تاثیر دارند . بسیاری از گیاهان قبل از اینکه بتوانند برای گل دادن تحریک و آماده شوند، نیاز به گذرانیدن یک پریود درجه حرارت پایین ( 2 تا 4 درجه سانتی گراد ) و بدنبال آن روزهای بلند دارند . اگر درجه حرارت پایین توسط گیاه دریافت نشود ، از افزایش طول ساقه ممانعت می شود و حالت تجمع برگها روی ساقه ( روزت) ایجاد می شود هنگامی که مرحله گل دادن در گیاه تحریک می شود، طول ساقه افزایش می یابد . جیبرلین می تواند در تعددی از این قبیل گیاهان جایگزین درجه حرارت پایین شود و گل دادن را تحریک کند.

همچنین مشاهده شده است که اگر برخی از دانه ها و شکوفه ها با جیبرلین ها تیمار شوند خواب ( دورمانسی) آنها شکسته می شود . مقدار جیبرلین داخلی در برخی دانه ها افزایش می یابد تا سرانجام منجر به رویش دانه شود. استعمال جیبرلین خارجی سبب تسریع رویش چنین دانه هایی می شود که حالت خواب در آنها ظاهرا به علت کمبود جیبرلین داخلی در آنها است . مکانیزمی شبیه به خواب در برخی شکوفه ها نیز مشاهده شده است.
بسیاری از عکس العمل های فیزیو لوژیکی نسبت به جیبرلینها شامل هر دو مرحله تقسیم سلولی و افزایش اندازه سلول است. در این موارد ، اثرات جیبرلین ها مشابه اثرات تحریکی تیمار با آکسینها است . در این زمینه یک تفاوت وجود دارد و آن اینکه جیبرلینها هنگامی که روی گیاهان کامل استعمال شوند موثرتر هستند ، در حالیکه ، اثرات عمده آکسینها بر روی اندامها ی بریده و قطع شده مانند کولئوپتیلها ، میان گرهها ،ریشه ها و غیره مشاهده می شوند.

فرمهای جیبرلین ها در گیاهان
متجاوز از 50 GA های مختلف استخراج و شناسایی شده اند . بطور کلی هر گونه بخصوص از گونه های گیاهی تنها تعداد کمی از جیبرلینها را دارد. این که چرا گیاهان بایستی چنین ترتیب و تعداد جیبرلینها را در خود داشته باشند معلوم نیست . احتمالا یک گیاه بخصوص ممکن است تنها معدودی GA های مختلف را در خود داشته باشد و چنین به نظر می رسد که طی دوره بلوغ نوع GA های موجود در آن تغییر می کند . تفاوت های بین فرمهای GAزیاد نیست.

سیتوکینین ها (Cytokinins)
سیتوکینین ها به دنبال تلاشهای انجام شده جهت یافتن عوامل موثر بر تقسیم سلولهای گیاهی کشف شدند . به دنبال آن ، تاثیر آنها بر بسیاری از فرایند های فیزیولوژیکی و تکاملی دیگر آشکار گردید . این اثرات شامل تاخیر در پیری اندامهای جدا شده از گیاه اصلی ، انتقال عناصر غذایی ، بلوغ کلروپلاست ، توسعه لپه ها و کنترل ریخت زایی است.

تقسیم سلولی در نمو گیاه به طور کلی سلولهای بالغ گیاهی تقسیم نمی شوند . این سلولها در نتیجه تقسیم سلولهای مریستم اولیه و ثانویه شکل می گیرند ، و پس از تشکیل ، بزرگ شده و تمایز می یابند . به محض تعیین وظیفه سلولهای بالغ در گیاه ، نظیر انتقال مواد فتوسنتز و یا حمایت گیاه جهت استقرار معمولا این سلولها در طول زندگی گیاه ، دوباره تقسیم نمی شوند .

از این جنبه به سلولهای حیوانی شباهت دارند که گفته می شود به تمایز نهایی رسیده اند . هر چند مثالهای زیادی مبنی بر ظاهر ی بودن شباهت سلولهای گیاهی به رفتار سلولهای جانوری می توان ارایه کرد . به طور واقعی مشخص شده که هر نوع سلول گیاهی که هسته اش رسیده باشد ،توانای تقسیم شدن را دارد.
سلولهای گیاهی تمایز یافته بالغ در برخی شرایط قادر به تقسیم شدن هستند.

این موضوع که در روند تکامل طبیعی بعضی از انواع ، سلولها یا در پاسخ به یک محرک خارجی انجام می شود نشانگر این است که سلولهای گیاهی تمایز نهایی نیافته اند مگر زمانی که در مرحله رسیدگی از بین بروند . در بسیا ری از گونه ها تعدادی از سلولها رسیده پوست و یا آوند آبکش مانند کامبیوم آوندی یا کامبیوم چوب برای تشکیل مریستم های ثانویه دوباره تقسیم می شوند . در ناحیه جداشدن قاعده دمبرگ سلولهای پارانشیم رسیده بعد از یک دوره غیر فعال میتوزی شروع به تکثیر دوباره میکنند.

بافتهای زخمی شده گیاه سلولهای نزدیک به زخم را برای تقسیم تحریک می کنند . حتی سلولهای کاملا تخصص یافته مانند شیره های آوند آبکش و سلولهای محافظ ممکن است در اثر ایجاد زخم حداقل یکبار واداربه تقسیم شوند . سلولهای زخمی که برای فعالیت میتوزی فعال شده اند نوعا خود محدود کننده اند بعد از چند تقسیم سلولهای تقسیم شونده عمل تقسیم را متوقف کرده و تقسیم مجددی انجام نمی دهند اما وقتی باکتریهای موجود در خاک وارد زخم شوند .

می توانند سبب ایجاد حالت نئوپلاستیک ( تومور شکل) یانوعی بیماری به نام تاول تاجی شوند که مدرکی عینی از پتانسیل تقسیم میتوزی سلولهای بالغ گیاهی می باشند . تاول تاجی شکل بیشتر روی گیاهان دولپه ای تاثیر می گذارد . بدون آلودگی اگروباکتریومی ، تقسیم سلولی که توسط زخم تحریک شده بعد از چند روز کاهش می یابد و از سلولهای جدید به صورت یک لایه سلول کرکی یا بافت آوندی حفاظتی تمایز می یابند .

اگر چه باکتریوم خصوصیت سلولهای تقسیم شونده را در واکنش به زخم ایجاد شده تغییر می دهد به طوریکه حالت شبه سرطانی به خود می گیرد اما این سلولها عمل تقسیم را متوقف نمی کنند بلکه به تقسیم در طول زندگی گیاه ادامه داده و توده سازمان نیافته ای از بافت تومور را به نام تاول تولید می کنند. بسیاری از زیست شناسان بر این باور بوده اند که همان گونه که میکرو ارگانیسم ها در لوله های آزمایش یا در پتری دیش کشت می شوند ، ممکن است اندامها ، بافتها و سلولها نیز بتوانند در محیط ساده ای از مواد غذایی رشد کنند.

کشف و شناسا یی سیتو کینین ها
در یک تحقیق ، به منظور شروع و تداوم تکثیر بافتهای طبیعی ساقه در محیط کشت مواد بسیار زیادی مورد آزمایش قرار گرفتند . یک سری از مواد از عصاره مخمر گرفته تا عصاره آب گوجه فرنگی ، اثر مثبتی در بعضی از بافتها داشتند . اما حداکثر تحریک کنندگی زمانی اتفاق می افتد که مایع آندوسپرم نارگیل یا شیر با آب نارگیل به محیط کشت اضافه گردد . محیط کشت مغذی وایت تهیه شده با اکسین 20-10 % و شیر نارگیل تقسیم سلولهای بالغ را حمایت می نماید و در گونه های متعددی تکثیر آنها تا تشکیل بافت کالوس ادامه می یابد .

این مساله نشان داد که شیر نارگیل دارای یک ماده یا موادی است که سبب ورود یا ابقای سلولهای بالغ در چرخه تقسیم سلولی می شوند. تلاشهای بسیاری برای تعیین ماهیت شیمیایی ماده موجود در شیر نارگیل که احتمالا عاملی برای شروع تکثیر سلول می باشد ، انجام شد و بالاخره معلوم شد که شیر نارگیل دارای هورمون سیتوکینین زآتین است ولی این مساله تا چندین سال بعد از کشف سیتوکینین معلوم نبود .

تسریع تقسیم سلولی بارزترین و مهمترین خاصیت موادی است که به عنوان سیتوکینین طبقه بندی می شوند .
سیتوکینین ها پیری را به تاخیر انداخته و انتقال مواد غذایی را تحریک می کنند .
برگهای جدا شده از گیاه حتی اگر مرطوب باشند و عناصر معدنی آنها تامین گردد ، کلروفیل ، RNA ، لیپیدها و پروتئین را به آرامی از دست می دهند . این فرایند ها ی طراحی شده با گذشت زمان که منجر به مرگ می شوند پیری نامیده می شوند . پیری برگ در تاریکی نسبت به روشنایی سریع تر است . تیمار برگهای جدا شده بسیاری از گونه ها با سیتوکینین ، پیری آنها را به تاخیر می اندازد . اگر چه سیتوکینین ها به طور کامل از پیری جلوگیری نمی کنند ، ولی اثرات آنها مخصوصا زمانی که سیتوکینین مستقیما روی برگ متصل به گیاه پاشیده شود ، می تواند کاملا محرک باشد .

اگر فقط یک برگ تیمار شده باشد ، سبز باقی مانده و مابقی برگهای هم سن آن زرد شده و می افتد . حتی اگر قسمت کوچکی اگر قسمت کوچکی در روی برگ با سیتو کینین تیمار شود ، سبز باقی می ماند ، در حالی که بافتهای اطراف همان برگ شروع به پیر شدن می کنند.
سیتو کینین ها رسیدگی کلروپلاست ها را تسریع می کنند.
هر چند بذر های می توانند در تاریکی جوانه بزنند ولی مورفولوژی گیاهچه های رشد کرده در تاریکی نسبت به گیاهچه هایی که در روشنایی رشد کرده اند خیلی متفاوت است. به گیاهچه های رشد کرده در تاریکی اتیوله شده گفته می شود (شکل9-3) . میان گره ها در گیاهچه های اتیوله شده بلند تر شده ، برگها گسترش نیافته و کلروپلاست ها رسیده نیستند . در عوض ، پروپلاستید های گیاهچه های رشد کرده در تاریکی داخل اتیو پلاستها رشد نموده و در غشاهای درونی ، شبکه فشرده و منظمی به نام پرولاملار تشکیل می دهند . اتیو پلاست ها دارای یکسری از کاروتنوئید ها هستند و به همین علت گیاهچه های اتیوله شده زرد به نظر می رسند ، ولی کلروفیل یا اکثر آنزیم ها و پروتئین ها ی ساختمانی مورد نیاز برای تشکیل سیستم تیلا کوئیدی کلروپلاست و دستگاه فتوسنتزی را نمی سازند .

زمانی که گیاهچه هادر روشنایی جوانه می زنند کلروپلاست مستقیما توسط پروپلاستید ها ی موجود در جنین رسیده می شوند ، ولی اتیوپلاستها نیز زمانی که گیاهچه های اتیوله شده در معرض نور قرار بگیرند می توانند در داخل کلروپلاستها رسیده شوند.
اگر برگهای اتیوله شده قبل از قرار گرفتن در معرض نور با سیتوکینین تیمار شوند ، کلروپلاستها یی با گرانای گسترده تر تشکیل می دهند . همچنین کلروفیل و آنزیم های فتوسنتز بعد از قرار گرفتن در معرض نور با سرعت بیشتری ساخته می شوند. سیتوکینین قادر به تسریع این تغییرات در تاریکی نیست ، ولی تحریک رسیدگی کلروپلاست تشکیل شده در معرض نور توسط سیتوکینین کاملا معلوم است این نتایج نشان می دهد که سیتوکینین ها ساخت پروتئین های فتوسنتزی را تسریع می کنند.

سیتو کینین ها می توانند سبب تحریک توسعه سلول شوند
سیتوکنین ها می توانند باعث توسعه سلول در بعضی بافتها و اندامها شوند . این اثر بیشتر در دولپه ایها یا برگهای لپه ای در گیاهانی مانند خردل ، خیار و آفتابگردان به وضوح دیده می شود . لپه های این گونه ها به علت توسعه سلول در طول رشد گیاهچه ها بزرگ می شوند . تیمار سیتوکینین توسعه اضافی سلول را بدون اینکه افزایشی در وزن خشک لپه های تیمار شده ایجاد کند ، تسریع می کند .
سیتوکینین ها سنتز پروتئین راتنظیم می کنند
– مدارک خوبی وجود دارد که سیتوکینین ها در تنظیم سنتز پروتئین ایفای نقش می کنند . پلی ریبوزوم ها دستگاههای سنتز پروتئین هستند . آنها دارای مولکولهای پیام آور RNA میباشند که به ریبوزوم های زیادی متصل هستند . هر ریبوزوم در مرحله مختلفی از ترجمه mRNA به پلی پپتید قرار دارد.

اتیلن ( Ethylene)
اثرات فیزیولوژیکی اتیلن روی رشد گیاهان 75 سال است که شناخته شده است اتیلن یک گاز تبخیر شدنی است که بر اثر احتراق ناقص ترکیبات پر کربن مانند ذغال سنگ ، نفت و گاز طبیعی تولید می شود . اتیلن یک جزء تشکیل دهنده دود ، گاز و دود اگزوز اتومبیلها و سایر گازهای صنعتی است.
برخی از علائم و نشانه های این اثرات زیان آور شامل ریزش برگها ، پیچش غیر عادی پهنک برگ و دمبرگ و دمگل ، بی رنگ شدن گلبرگهای گل ، تورم ساقه ،ممانعت از طویل شدن ساقه و ممانعت از رشد ریشه بود که سرانجام منجر به شناسایی حضور اتیلن در گاز مزبور شد .

تحقیقات فیزیولوژیکی بعدی منجر به کشف این نکته شد که گیاهان در ضمن رشد و نمو خود از طریق مراحل متابولیکی اتیلن تولید می کنند .خصوصا میوه های در حال رسید ن مقادیری اتیلن سنتز می کنند که سبب تجمع غلظتهای نسبتا زیاد اتیلن در داخل فضاهای بین سلولی بافت میوه می شود . اتیلن همچنین در سایر بافتها و اندامها مانند گلها ، برگها ، ساقه ها ، ریشه ها ، غده ها و دانه ها تولید می شود. مقدار اتیلن موجود دربافت گیاهی خیلی کم و معمولا کمتر از است ، ولی محتمل است که غلظتهای زیاد آن در زمانهای معین ضمن رشد و نمو، در محل و بافت بخصوصی از گیاه تولید شود.

اثرات فیزیولوژیکی اتیلن
شامل خمیدگی برگ ( اپی ناستی)، ریزش برگها ، تورم ساقه ،ممانعت از رشد ساقه و ریشه ، رسیدن میوه ها ،و بی رنگ شدن گلبرگها می باشد . بدوا عقیده بر این بود که این اثرات بر روی رشد به علت وجود مقادیر نسبتا زیاداتیلن در محیط خارج می تواند باشد . با کشف اینکه گیاهان ، اتیلن سنتز کرده خودشان را به محیط رها می کنند ، این احتمال داده شد که اتیلن داخلی ( گیاهی) ممکن است بعنوان یک هورمون رشد عمل کند.اکنون عقیده بر آن است که اتیلن یک هورمون رشد گیاهی است و نشان داده شده است که در بسیاری مراحل فیزیولوژیکی شرکت دارد.

اتیلن گسترش و بزرگ شدن را در جهت طولی ممانعت می کند و گسترش را در جهت عرضی تحریک می کند چنانکه به نظر می رسد که ساقه متورم شده است.

بعلاوه ، اتیلن تغییر در عکس العمل ژئوتروپیسمی را در بافت ساقه اتیوله تحریک می کند . این مرحله نیز تحت تاثیر آکسین است.
همچنین ،اتیلن ریزش برگها ،ساقه ها ، گلها و میوه ها را تسریع می کند . اتیلن یک اثر متقابل با آکسینها در مراحل متابولیکی همراه و مربوط به پیری دارد . بسیاری از جنبه های علمی مربوط به انبار کردن میوه ها به اتیلن مربوط می شود . اتیلن مرحله رسیدن را در بسیاری میوه ها شروع می کند و در ضمن رسید ن میوه ها ، مقادیر نسبتا زیادی اتیلن تولید و به هوای اطراف آزاد می شود . مرحله رسیدن میوه ها می تواند از طریق خارج کردن اتیلن از هوای مجاور میوه های در حال نمو و یا با کاهش مقدار اکسیژن هوای اطراف میوه ها به یک سطح نازل به تاخیر انداخته شود .

میوه هایی مانند پرتقال ، لیمو ، گریپ فروت ، خربزه ، سیب ، موز و آوکادو را میتوان با کنترل مقدار گازهای موجود در هوای انبار مدتهای طولانی و قابل ملاحظه در انبار نگهداری کرد . میوه های نگهداری شده تحت شرایط کنترل شده در انبار را می توان در هر زمان ، با تغییر مقادیر گاز اکسیژن یا اتیلن در هوای اطراف میوه ها تحریک به رسیدن کرد.

اسید آبسیزیک (Abscisic acid)
سال ها بود که فیزیو لوژیست های گیاهی معتقد بودند که پدیده خواب بذر یا جوانه به علت ترکیبات بازدارنده می باشد و به همین دلیل آزمایشهایی را با هدف جداسازی آنها طرح ریزی کردند و این امر منجر به کشف اسید آبسیزیک به عنوان یکی از ترکیبات ممانعت کننده گردید.
آزمایشات اولیه شامل استفاده از کروماتوگرافی برای جداسازی عصاره های گیاهی ، همراه با سنجش حیاتی براساس رشد کولئو پتیل یولاف است . این تلاشها مبین یک ماده بازدارنده متفاوت از اکسین بود . ده سال بعد ، ماده ای موثر که باعث افزایش ریزش میوه های پنبه می شد .

به صورت خالص به دست آمد و ضمن کریستاله شدن آبسیزین ΙΙ نام گرفت. همان زمان ، ماده ای از برگهای درخت چنار به دست آمد که موجب افزایش خواب جوانه می شد و دورمین نام گرفت . زمانی که دورمین از نظر شیمیایی مورد آزمایش قرار گرفت مشابه آبسیزین ΙΙبود و به علت این که در فرایند ریزش دخالت داشت به نام اسید آبسیزیک (ABA) شناخته شد . چندین سال تصور می شد که القای ریزش یکی از اولین وظایف اسید آبسیزیک می باشد . اما اکنون می دانیم که اتیلن عامل اصلی ریزش اندام است.

اسید ابسیزیک باعث واکنش های فیزیولوژیکی متعددی در گیاهان عالی می شود
– خواب بذر . توانایی بذرها برای به تعویق انداختن فرایند رشد تا فراهم شدن زمان مناسب برای جوانه زنی یک خصوصیت خاص بذرها است. به نظر می رسد که ABA به عنوان هورمون القا کننده خواب عمل می کند .
– رشد . ABA از القای رشد ناشی از اکسین در گیاهچه ها جلوگیری می کند و به همین دلیل ABA نیز هورمون بازدارنده رشد نامیده می شود.
– تنش و انسداد روزنه ای . نقش ABA در تنش های یخ زدگی ، شوری و آب باعث شده است که ABA را به عنوان هورمون تنش شناسایی کنند . ABA در بسته شدن روزنه بسیار موثر است و انباشته شدن آن در برگهای تحت تنش ، نقش مهمی در کاهش تلفات آب به وسیله تعرق در شرایط تنش آب ایفا می کند .

جذب آب . کاربرد ABA بر روی بافت های ریشه جریان آب و جریان یون را تحریک می کند که نشانگر این است که اسید آبسیزیک پتانسیل فشاری را نه تنها به وسیله کاهش تعرق ، بلکه به وسیله افزایش جریان آب درون ریشه تنظیم می کند . ABA جریان آب را به وسیله افزایش هدایت هیدرولیکی ( کاهش مقاومت در برابر آب ) و به وسیله افزایش جذب یون ، که سبب افزایش اختلاف پتانسیل آب بین خاک و ریشه می شود ، افزایش می دهد. علاوه بر این ABAرشد ریشه و ظهور ریشه های جانبی را تحریک می کند ، در حالی که مانع از رشد برگها می شود . این اثرات متضاد ABA روی ریشه و برگ ها سبب کاهش سطح برگ و افزایش سطح ناحیه جذب آب ریشه می شود که به تحمل گیاه در شرایط تنش خشکی کمک می کند .

ریزش و پیری. اسید آبسیزیک ابتدائا به عنوان یک عامل ریزش برگ جداسازی شد . با این وجود ثابت شده است که اسید آبسیزیک ریزش اندام ها را صرفا در تعداد کمی از گونه ها تحریک می کند و اولین هورمونی که سبب ریزش می شود ، اتیلن است . از طرف دیگر ، ABA به وضوح در پیر شدن دخالت دارد و از طریق تسریع پیری ممکن است به طور غیر مستقیم تشکیل اتیلن را افزایش دهد و ریزش را تحریک کند . پیری آخرین مرحله تکاملی قبل از مرگ یک عضویا کل موجود می باشد.

فصل نهم
مواد تنظیم کننده رشد گیاهان

ساختمان و اثرات فیزیولوژیکی
گیاهشناسان سالهای متمادی علاقه مند به پی بردن به این نکته بوده اند که گیاهان چگونه فرمها و اشکال مشخص خود را به دست می آورند. در اواسط قرن 18 فیزیولوژیست گیاهی مشهور آلمانی ژولیوس وان ساکس چنین اظهار نظر کرد که شکل و فرم گیاهان از طریق عمل مواد ویژه " ایجاد کننده اندامها " مانند " ایجاد کننده برگها " مواد " ایجاد کننده ریشه ها " و مواد " ایجاد کننده گلها " حاصل می شود . کوششهای اولیه برای جداسازی و تشخیص هویت مواد مزبور موفقیت آمیز نبود و نظرات ساکس توسط سایر گیاهشناسان همزمان با او قویا مورد حمایت قرار نگرفت ،

یک نظریه دیگر که ( در آن زمان) بیشتر مورد قبول بود اظهار می داشت که فرم و شکل گیاه از وجود و تامین مقادیر معین مواد آلی تشکیل دهنده (پیکره گیاه) مانند ئیدارت های کربن ، ازت محلول، پروتئین و یا سایر مواد نتیجه می شود . این نظر پس از انجام مطالعات بر روی ترکیب شیمیایی گیاهان در مراحل مختلف نمو و هنگامی که گیاهان ( مورد مطالعه) در شرایط مختلف از نظر میزان مواد غذایی معدنی ، نور و درجه حرارت پرورش داده شدند پذیرفته شد.

در آن هنگام ، کنجکاویهای زیادی در زمینه استخراج و جداسازی و تشخیص هویت مواد تشکیل دهنده ( پیکره گیاهان) به عمل می آمد . ترکیباتی مانند نشاسته ، ساکارز ، گلوکز ، فرکتوز ، اسیدهای آلی ، اسیدهای آمینه ، پروتئین و اسید های هسته ای در گیاهان کشف شد و روشهایی نیز برای تجزیه آنها تدوین و ارائه شد.
کارهای بعدی نشان داد که دو نظریه ای که قبلا اشاره کردیم کاملا انحصاری نیستند .

نظر ساکس درباره مواد ایجاد کننده اندامهای گیاهی چنین بود که گیاهان دارای موادی هستند که مراحل بیوشیمی را آغاز می کنند و این مراحل بنوبه خود سرانجام منجر به ایجاد و تشکیل اندامهای گیاهی و یا سایر جنبه های رشد گیاهان می شود . گروههای متعدد و مجزا و مختلفی از ترکیبات آلی بعنوان مواد آغاز گر ( مراحل رشد و نمو گیاهان) شناخته شده اند که عبارتند از : آکسین ها ، جیبرلین ها ، سیتوکینین ها ، و ترکیبات فنلی . بعلاوه ترکیبات متعدد و مخصوص دیگری مانند اتیلن و اسید ابسیزیک نیز در گیاهان کشف شده اند . ساختمان شیمیایی نمونه هایی از این ترکیبات در شکل 9-1 نشان داده شده است.

به استثنای اتیلن ، همه آن ترکیبات دارای حلقه های کربنی با درجه پیچیدگی متفاوت هستند . اسید ایندول -3- استیک و سیتوکینین ها حاوی ازت هستند در حالی که جیبر لین ها ، ترکیبات فنلی و اسید ابسیزیک تنها از کربن و هیدروژن و اکسیژن تشکیل شده اند.
احتمالا سایر مواد رشد گیاهی که دارای فعالیت تنظیم کنندگی رشد هستند نیز در گیاهان کشف خواهند شد زیرا عصاره های بافتها و اندامهای گیاهی استخراج شده و نقش آنها در تغییرات مربوط به رشد و شکل و فرم گیاهان نشان داده شده است.

ماهیت شیمیایی مواد فعال موجود در این عصاره های هنوز کشف نشده است .
مواد آغاز کننده ( مراحل رشد و نمو) که بعنوان هورمون های گیاهی ( فیتو هورمون) نامیده می شوند ، فعل و انفعالات بیوشیمیایی را آغاز می کنند و سبب ایجاد تغییرات در ترکیب شیمیایی داخل گیاه می شوند .

همراه با این تغییرات در ترکیب شیمیایی گیاه ، تغییراتی نیز در رشد گیاه به وجود می آید که منجربه تشکیل ریشه ها ، ساقه ها ، برگها ، گلها و سایر بخشهای اختصاصی گیاه می شود . عوامل محیطی مانند نور و درجه حرارت در ضمن مراحل رشد و تمایز ، بر هورمون های گیاهی و مراحل بیوشیمیایی گیاهی تاثیر دارند.
تحقیقات و تجربیات چارلز داروین و پسرش فرانسیس در انگلستان خطوط تحقیقی متعددی را آغاز کرد که سرانجام بسیاری از عقاید اولیه ساکس مورد تایید قرار گرفت .

داروین به حرکات گیاهی علاقه مند بود که متداولابه آنها تروپیسمها ( حرکات از پیش تعیین نشده) گفته می شود و در پاسخ و عکس العمل به محرکهای خارجی مانند نور ( فتو تروپیسم– نور گرایی) ، نیروی جاذبه و ثقل زمین ( ژئو تروپیسم زمین گرایی ) ، تماس ( تیگما تروپیسم) ، و مواد شیمیایی ( شیمو تروپیسم ) در گیاهان ایجاد و مشاهده می شود.

داروین همچنین پدیده سرکومنو تیشن یعنی حرکات چرخشی و پیچش ساقه ها را بررسی و تحقیق کرد . داروین در مطالعاتش در زمینه نور گرایی در گیاهان ، غلاف ساقه تعدادی از علفها را به عنوان ابزار آزمایش به کار برد . هنگامی که دانه های گیاهان در تاریکی روییدند ، کولئو پتیلها بطور مستقیم ( عمودی ) رشد کردند. هنگامی که کولئو پتیل در معرض تابش نور بطور یکطرفه قرار گرفت ، به طرف نور خم شد. داروین متوجه شد هنگامی که بخش پایین و قاعده ای ( نه نوک ) کولئوپتیل در معرض تابش نور واقع شود در کولئو پتیل خمیدگی ایجاد نمی شود. همچنین اگر نوک کولئو پتیل توسط یک کلاهک غیر قابل نفوذ نسبت به نور پوشانیده شودو سپس از یک جانب در معرض تابش نور واقع شود در این حالت نیز در کولئو پتیل خمیدگی ایجاد نمی شود (شکل 9-2). مشاهدات داروین در سالهای دهه 1870 صورت گرفت و در اوایل دهه 1900 فیزیولوژیستهای گیاهی مجددا مساله نور گرایی ( فتو تروپیسم ) را مورد توجه قرار دادند در سال 1907 فیتینگ نشان داد که بریدگی و ایجاد شکافهای جانبی در بخش پایینی و قسمت زیرین نوک غلاف ساقه سبب ممانعت از خمیدگی آن به طرف منبع نور نمی شود. بویسن جنسون نشان داد که اگر نوک یک کولئوپتیل قطع شود و سپس یک لایه ژلا تین یا آگار بین نوک و محل قطع شده کولئو پتیل قرار داده شود ، کولئوپتیل به رشد خود ادامه می دهد .
شکل 9-1: برخی از مواد داخلی رشد گیاهی

در حالی که اگر یک ماده غیر قابل نفوذ نسبت به آب ، مانند میکا یا یک ورقه نازک سرب بین نوک و محل قطع شده کولئو پتیل قرار داده شود ، رشد در بخش زیرین نوک کولئو پتیل تسریع و در نتیجه ، خمیدگی ایجاد می شود.
سپس ونت این واقعیت را کشف کرد که نوکهای کولئوپتیل حاوی ماده ای است قادر به تسریع و تشدید رشد طولی کولئو پتیلهای قطع شده است. ونت در تحقیقات خود از کولئوپتیلهای نشاهای یولاف (Avena sativa ) استفاده کرد ، ولی کولئوپتیلهای سایر نشا های گیاهان علفی ( گندم ،ذرت، و غیره) نیز مورد مطالعه قرار گرفته اند. ونت نوک کولئو پتیل هایی را که در تاریکی رشد کرده بودند قطع کرد و آنها را در تاریکی روی ورقه هایی از ژلاتین یا آگار قرار داد و چندین ساعت در همان وضعیت به حال خود باقی گذاشت . همه مراحل بعدی آزمایش نیز در تاریکی انجام شد .
شکل 9-2: اثر فتوپریودیسم بر ساقه گیاهان

سپس نوکهای کولئوپتیلها را از روی ورقه های آگار برداشت و ورقه ها را به قطعات مکعب شکل کوچکی تقسیم کرد . هنگامی که قطعات مکعبی مزبور روی محل قطع شده یک کولئو پتیل بمدت چند ساعت قرار داده شوند ، سرعت رشد طولی کولئو پتیل نزدیک به سرعت رشد طولی یک کولئو پتیل سالم و قطع شده است ، این امر بیانگر آن است که نوکهای کولئوپتیل ها حاوی یک ماده نافذ است که قادربه تحریک رشد طولی بخش تحتانی و قاعده کولئو پتیلهاست. ونت همچنین نشان داد که اگر یک مکعب آگار حاوی ماده نافذ نوک کولئوپتیل بطور نامتقارن روی مقطع یک تنه کولئوپتیل چند ساعت قرار داده شود ، کولئوپتیل همان طور که رشد می کند خمیده می شود و درجه خمیدگی متناسب است با غلظت ماده رشد موجود در مکعب آگار .

این مشاهده و آزمایش اساس روش اندازه گیری فعالیت اکسین ، یعنی آزمایش کولئو پتیل یولاف است، که ونت انجام داده است. اسید ایندول استیک (IAA ) از نوک کولئوپتیل ها استخراج شده است( مقدار یک میکرو گرم از 10000 نمونه نوک کولئوپتیل ) . مقادیر قابل تشخیص IAA تنها از تعداد معدودی گیاهان استخراج شده است ، ولی شواهد آزمایشی کروماتوگرافی نشان می دهد که این ماده بطور گسترده و وسیعی در گیاهان در سلسله گیاهی وجود دارد.
در روشهای سنجش حیاتی دیگر می شود به کار برده می شود . اسید ایندول استیک یک آکسین است که بطور طبیعی در گیاهان وجود دارد.

اثرات فیزیولوژیکی آکسینها
اسید ایندول استیک و سایر آکسینها در تعدادی از جنبه ها و مراحل نمو گیاهی شرکت دارند. برخی از اثرات مهم آنها بطور اختصار شرح داده می شوند .
بزرگ شدن یاخته ها : مطالعات اولیه بر روی رشد کولئوپتیل نشان داد که و سایر آکسینها بزرگ شدن یاخته ها را تحریک و تشدید می کنند . رشد طولی کولئو پتیل ها و ساقه ها در نتیجه بزرگ شدن یاخته ها انجام می شود. یک توزیع نامساوی IAA در ساقه ها و ریشه ها سبب اختلاف در میزان بزرگ شدن یاخته ها ( در قسمت های مختلف ساقه ها و یا ریشه ها ) می شود و همراه با آن در اندام مربوط خمیدگی ایجاد می شود ( مانند ژئوتروپیسم و فتوتروپیسم ) . یاخته مریستمی در بافت کالوس و یا در محیط های مخصوص کشت افت های گیاهی نیز تحت تاثیر IAA قرار گرفته و بزرگ می شوند.

ممانعت از نمو شکوفه های جانبی
نمو شکوفه ها ( جوانه های ) جانبی را آکسین تولید شده در مریستم انتهایی که بعدا به طرف پایین ساقه منتقل می شود متوقف می کند . اگر منبع تولید آکسین را از طریق قطع کردن ( بریدن) مریستم انتهایی از روی ساقه برداریم در این صورت شکوفه های جانبی از قید حالت بازدارندگی اکسین رها می شوند و نمو خود را آغاز می کنند.
ریزش برگ برگها بر اثر تغییراتی که در خواص شیمیایی و فیزیکی یاخته های منطقه ریزش ( گروهی از یاخته ها در قاعده دمبرگ ) ایجاد می شود از ساقه جدا می شوند. چنین به نظر می رسد که غلظت IAA در یاخته های مجاور و یا داخل منطقه ریزش با مرحله ریزش رابطه دارد.

فعالیت کامبیومی ( Cambial Activity)
رشد ثانوی ساقه ها بر اثر انجام تقسیم سلولی در لایه زاینده ( کامبیوم ) و تشکیل بافتهای آوند چوبی و آوند آبکش است. آکسینها تقسیم سلولی را در ناحیه کامبیوم تسریع و تشدید می کنند.
رشد ریشه: همان طور که قبلا اشاره شد ، بزرگ شدن یاخته ها معمولا بوسیله IAA تحریک و تسریع می شود. در یک محدوده معین از غلظتهای IAA ، میزان بزرگ شدن سلولها متناسب است با مقدار IAA موجود در ریشه ها اثر معمولی IAA ممانعت از بزرگ شدن یاخته ها است ولی تنها در غلظت های خیلی کم و پایین ،IAAاثر تحریک کننده بر بزرگ شدن یاخته ها دارد.
بزودی پس از شناخت اهمیت IAA بعنوان یک هورمون گیاهی ، ترکیباتی که از نظر ساختمانی مشابه آکسینها بودند ، سنتز و ساخته شدند و از نظر خواص و فعالیت بیولوژیکی مورد آزمایش قرار گرفتند.

کشف جیبر لین Gibberellin
تصور می شود که کشف جیبر لین ها قبل از اینکه توسط دانشمندان آمریکایی و انگلیسی در دهه 1950 انجام گیرد ، توسط دانشمندان ژاپنی انجام شده است. مدتهای طولانی بود که شالیکاران آسیایی با نوعی بیماری که در آن گیاهان ارتفاع بلند پیدا نموده ولی دانه ای تولید نمی نمودند آشنایی داشتند بیماری شناسان گیاهی طی تحقیق روی این بیماری دریافتند که گیاه از طریق یک ماده شیمیایی مترشحه از قارچی که گیاه به آن آلوده شده بود به افزایش ارتفاع تحریک شد

این ترکیب شیمیایی از طریق صافی های کشت قارچ جداشده و بعد از نامگذاری قارچ تحت عنوان جیبرلا فوجی کوری، جیبرلین نام گرفت. وزارت کشاورزی ایالات متحده موفق به کشف ساختار موادی شدند که از صافیهای کشت قارچ خالص سازی شده بودند . آنها این ترکیبات را اسید جیبرلیک نامیدند ( شکل 9-1).

به محض دستیابی به اسید جیبرلیک ، فیزیولوژیستهای گیاهی آزمایشات خود را روی این ترکیب و در انواع مختلفی از گیاهان آغاز کردند .واکنشهایی تماشایی در رشد طولی گیاهان پا کوتاه و گیاهان دارای رشد رزت به دست آمد و خصوصا این مساله عموما در گیاهان پاکوتاه نخود ( Pisum sativum )، ذرت پاکوتاه (Zea mays ) و نیز گیاهان رزت یکساله دیده شد.
گیاهانی که به دلایل ژنتیکی ارتفاع خیلی زیادی داشتند هیچ واکنش دیگری به جیبرلین ها نشان ندادند . اخیرا آزمایشاتی که روی ذرت پاکوتاه انجام شده است موید این مطلب بودند که در واقع رشد طولی طبیعی گیاهان تحت کنترل جیبرلین هاست.
در حل حاضر ، متجاوز از 50 نوع GA شناخته شده اند و بیش از 40 نوع آنها در گیاهان سبز وجود دارند.

اثرات فیزیولوژیکی جیبرلین ها
بسیاری از گیاهان به استعمالGA با افزایش قابل ملاحظه طول ساقه شان پاسخ می دهند.
برییان و همینگ متوجه شدند که GA اثر رشدی مختلفی بر روی ارقام قد کوتاه و معمولی گیاه نخود دارد ، به این دلیل که ، هنگامی که روی گیاهان نخود قد کوتاه GA پاشیده شود ، طول میان گرهها افزایش می یابد و ظاهر گیاهان مانند واریته های نخود معمولی قد بلند می شود . در حالی که ، واریته های قد بلند گیاه نخود نسبت به ( استعمال ) جیبرلینها پاسخ و عکس العملی نشان نمی دهند .

گیاه ذرت نیز عکس العمل مشابهی نشان می دهد . حدود 20 رقم گیاه ذرت قد کوتاه وجود دارد که نیمی از آنها نسبت به استعمال GA خارجی عکس العمل نشان می دهند و ارتفاع گیاه افزایش می یابد . هنوز روشن نیست که چرا همه رقمهای گیاه ذرت قد کوتاه نسبت به GA عکس العمل نشان نمی دهند .

دلیلی نداریم تا بر این باور باشیم که صفت قد کوتاه بودن تنها به ( مقدار و غلظت ) GA بستگی دارد ، زیرا ممکن است در میان گیاهان قد کوتاه ، آنهایی که نسبت به GA عکس العمل نشان نمی دهند دارای یک اساس بیوشیمیایی متفاوت برای قد کوتاهی خود باشند.
جیبرلینها علاوه بر اثراتی که روی طویل شدن ساقه دارند ، هنگامی که روی گیاهان سالم پاشیده شوند سبب افزایش سطح برگها در تعدادی گیاهان مختلف نیز می شوند . بطور مشابه ، استفاده از جیبرلینها سبب افزایش اندازه غنچه های گل در گیاهان کاملیا و گل شمعدانی و تعدادی گیاهان دیگر می شود. همچنین پس از پاشیدن GA ، اندازه برخی میوه ها افزایش می یابد ، واریته های متعدد گیاه انگور بطور متداول با جیبرلینها تیمار می شوند تا اندازه میوه هایشان افزایش یابد .

جیبرلینها همچنین تولید میوه های بدون دانه ( پارتنو کارپیک را در تعدادی از گیاهان تحریک می کنند . چنین میوه هایی معمولا بی دانه اند. جیبرلیها علا وه بر تاثیر در اندازه اندامها ، روی سایر عکس العمل های گیاهی نیز تاثیر دارند . بسیاری از گیاهان قبل از اینکه بتوانند برای گل دادن تحریک و آماده شوند، نیاز به گذرانیدن یک پریود درجه حرارت پایین ( 2 تا 4 درجه سانتی گراد ) و بدنبال آن روزهای بلند دارند . اگر درجه حرارت پایین توسط گیاه دریافت نشود ، از افزایش طول ساقه ممانعت می شود و حالت تجمع برگها روی ساقه ( روزت) ایجاد می شود هنگامی که مرحله گل دادن در گیاه تحریک می شود، طول ساقه افزایش می یابد . جیبرلین می تواند در تعددی از این قبیل گیاهان جایگزین درجه حرارت پایین شود و گل دادن را تحریک کند.

همچنین مشاهده شده است که اگر برخی از دانه ها و شکوفه ها با جیبرلین ها تیمار شوند خواب ( دورمانسی) آنها شکسته می شود . مقدار جیبرلین داخلی در برخی دانه ها افزایش می یابد تا سرانجام منجر به رویش دانه شود. استعمال جیبرلین خارجی سبب تسریع رویش چنین دانه هایی می شود که حالت خواب در آنها ظاهرا به علت کمبود جیبرلین داخلی در آنها است . مکانیزمی شبیه به خواب در برخی شکوفه ها نیز مشاهده شده است.
بسیاری از عکس العمل های فیزیو لوژیکی نسبت به جیبرلینها شامل هر دو مرحله تقسیم سلولی و افزایش اندازه سلول است. در این موارد ، اثرات جیبرلین ها مشابه اثرات تحریکی تیمار با آکسینها است . در این زمینه یک تفاوت وجود دارد و آن اینکه جیبرلینها هنگامی که روی گیاهان کامل استعمال شوند موثرتر هستند ، در حالیکه ، اثرات عمده آکسینها بر روی اندامها ی بریده و قطع شده مانند کولئوپتیلها ، میان گرهها ،ریشه ها و غیره مشاهده می شوند.

فرمهای جیبرلین ها در گیاهان
متجاوز از 50 GA های مختلف استخراج و شناسایی شده اند . بطور کلی هر گونه بخصوص از گونه های گیاهی تنها تعداد کمی از جیبرلینها را دارد. این که چرا گیاهان بایستی چنین ترتیب و تعداد جیبرلینها را در خود داشته باشند معلوم نیست . احتمالا یک گیاه بخصوص ممکن است تنها معدودی GA های مختلف را در خود داشته باشد و چنین به نظر می رسد که طی دوره بلوغ نوع GA های موجود در آن تغییر می کند . تفاوت های بین فرمهای GAزیاد نیست.

سیتوکینین ها (Cytokinins)
سیتوکینین ها به دنبال تلاشهای انجام شده جهت یافتن عوامل موثر بر تقسیم سلولهای گیاهی کشف شدند . به دنبال آن ، تاثیر آنها بر بسیاری از فرایند های فیزیولوژیکی و تکاملی دیگر آشکار گردید . این اثرات شامل تاخیر در پیری اندامهای جدا شده از گیاه اصلی ، انتقال عناصر غذایی ، بلوغ کلروپلاست ، توسعه لپه ها و کنترل ریخت زایی است.

تقسیم سلولی در نمو گیاه به طور کلی سلولهای بالغ گیاهی تقسیم نمی شوند . این سلولها در نتیجه تقسیم سلولهای مریستم اولیه و ثانویه شکل می گیرند ، و پس از تشکیل ، بزرگ شده و تمایز می یابند . به محض تعیین وظیفه سلولهای بالغ در گیاه ، نظیر انتقال مواد فتوسنتز و یا حمایت گیاه جهت استقرار معمولا این سلولها در طول زندگی گیاه ، دوباره تقسیم نمی شوند .

از این جنبه به سلولهای حیوانی شباهت دارند که گفته می شود به تمایز نهایی رسیده اند . هر چند مثالهای زیادی مبنی بر ظاهر ی بودن شباهت سلولهای گیاهی به رفتار سلولهای جانوری می توان ارایه کرد . به طور واقعی مشخص شده که هر نوع سلول گیاهی که هسته اش رسیده باشد ،توانای تقسیم شدن را دارد.
سلولهای گیاهی تمایز یافته بالغ در برخی شرایط قادر به تقسیم شدن هستند.

این موضوع که در روند تکامل طبیعی بعضی از انواع ، سلولها یا در پاسخ به یک محرک خارجی انجام می شود نشانگر این است که سلولهای گیاهی تمایز نهایی نیافته اند مگر زمانی که در مرحله رسیدگی از بین بروند . در بسیا ری از گونه ها تعدادی از سلولها رسیده پوست و یا آوند آبکش مانند کامبیوم آوندی یا کامبیوم چوب برای تشکیل مریستم های ثانویه دوباره تقسیم می شوند . در ناحیه جداشدن قاعده دمبرگ سلولهای پارانشیم رسیده بعد از یک دوره غیر فعال میتوزی شروع به تکثیر دوباره میکنند.

بافتهای زخمی شده گیاه سلولهای نزدیک به زخم را برای تقسیم تحریک می کنند . حتی سلولهای کاملا تخصص یافته مانند شیره های آوند آبکش و سلولهای محافظ ممکن است در اثر ایجاد زخم حداقل یکبار واداربه تقسیم شوند . سلولهای زخمی که برای فعالیت میتوزی فعال شده اند نوعا خود محدود کننده اند بعد از چند تقسیم سلولهای تقسیم شونده عمل تقسیم را متوقف کرده و تقسیم مجددی انجام نمی دهند اما وقتی باکتریهای موجود در خاک وارد زخم شوند .

می توانند سبب ایجاد حالت نئوپلاستیک ( تومور شکل) یانوعی بیماری به نام تاول تاجی شوند که مدرکی عینی از پتانسیل تقسیم میتوزی سلولهای بالغ گیاهی می باشند . تاول تاجی شکل بیشتر روی گیاهان دولپه ای تاثیر می گذارد . بدون آلودگی اگروباکتریومی ، تقسیم سلولی که توسط زخم تحریک شده بعد از چند روز کاهش می یابد و از سلولهای جدید به صورت یک لایه سلول کرکی یا بافت آوندی حفاظتی تمایز می یابند .

اگر چه باکتریوم خصوصیت سلولهای تقسیم شونده را در واکنش به زخم ایجاد شده تغییر می دهد به طوریکه حالت شبه سرطانی به خود می گیرد اما این سلولها عمل تقسیم را متوقف نمی کنند بلکه به تقسیم در طول زندگی گیاه ادامه داده و توده سازمان نیافته ای از بافت تومور را به نام تاول تولید می کنند. بسیاری از زیست شناسان بر این باور بوده اند که همان گونه که میکرو ارگانیسم ها در لوله های آزمایش یا در پتری دیش کشت می شوند ، ممکن است اندامها ، بافتها و سلولها نیز بتوانند در محیط ساده ای از مواد غذایی رشد کنند.

کشف و شناسا یی سیتو کینین ها
در یک تحقیق ، به منظور شروع و تداوم تکثیر بافتهای طبیعی ساقه در محیط کشت مواد بسیار زیادی مورد آزمایش قرار گرفتند . یک سری از مواد از عصاره مخمر گرفته تا عصاره آب گوجه فرنگی ، اثر مثبتی در بعضی از بافتها داشتند . اما حداکثر تحریک کنندگی زمانی اتفاق می افتد که مایع آندوسپرم نارگیل یا شیر با آب نارگیل به محیط کشت اضافه گردد . محیط کشت مغذی وایت تهیه شده با اکسین 20-10 % و شیر نارگیل تقسیم سلولهای بالغ را حمایت می نماید و در گونه های متعددی تکثیر آنها تا تشکیل بافت کالوس ادامه می یابد .

این مساله نشان داد که شیر نارگیل دارای یک ماده یا موادی است که سبب ورود یا ابقای سلولهای بالغ در چرخه تقسیم سلولی می شوند. تلاشهای بسیاری برای تعیین ماهیت شیمیایی ماده موجود در شیر نارگیل که احتمالا عاملی برای شروع تکثیر سلول می باشد ، انجام شد و بالاخره معلوم شد که شیر نارگیل دارای هورمون سیتوکینین زآتین است ولی این مساله تا چندین سال بعد از کشف سیتوکینین معلوم نبود .

تسریع تقسیم سلولی بارزترین و مهمترین خاصیت موادی است که به عنوان سیتوکینین طبقه بندی می شوند .
سیتوکینین ها پیری را به تاخیر انداخته و انتقال مواد غذایی را تحریک می کنند .
برگهای جدا شده از گیاه حتی اگر مرطوب باشند و عناصر معدنی آنها تامین گردد ، کلروفیل ، RNA ، لیپیدها و پروتئین را به آرامی از دست می دهند . این فرایند ها ی طراحی شده با گذشت زمان که منجر به مرگ می شوند پیری نامیده می شوند . پیری برگ در تاریکی نسبت به روشنایی سریع تر است . تیمار برگهای جدا شده بسیاری از گونه ها با سیتوکینین ، پیری آنها را به تاخیر می اندازد . اگر چه سیتوکینین ها به طور کامل از پیری جلوگیری نمی کنند ، ولی اثرات آنها مخصوصا زمانی که سیتوکینین مستقیما روی برگ متصل به گیاه پاشیده شود ، می تواند کاملا محرک باشد .

اگر فقط یک برگ تیمار شده باشد ، سبز باقی مانده و مابقی برگهای هم سن آن زرد شده و می افتد . حتی اگر قسمت کوچکی اگر قسمت کوچکی در روی برگ با سیتو کینین تیمار شود ، سبز باقی می ماند ، در حالی که بافتهای اطراف همان برگ شروع به پیر شدن می کنند.
سیتو کینین ها رسیدگی کلروپلاست ها را تسریع می کنند.
هر چند بذر های می توانند در تاریکی جوانه بزنند ولی مورفولوژی گیاهچه های رشد کرده در تاریکی نسبت به گیاهچه هایی که در روشنایی رشد کرده اند خیلی متفاوت است. به گیاهچه های رشد کرده در تاریکی اتیوله شده گفته می شود (شکل9-3) . میان گره ها در گیاهچه های اتیوله شده بلند تر شده ، برگها گسترش نیافته و کلروپلاست ها رسیده نیستند . در عوض ، پروپلاستید های گیاهچه های رشد کرده در تاریکی داخل اتیو پلاستها رشد نموده و در غشاهای درونی ، شبکه فشرده و منظمی به نام پرولاملار تشکیل می دهند . اتیو پلاست ها دارای یکسری از کاروتنوئید ها هستند و به همین علت گیاهچه های اتیوله شده زرد به نظر می رسند ، ولی کلروفیل یا اکثر آنزیم ها و پروتئین ها ی ساختمانی مورد نیاز برای تشکیل سیستم تیلا کوئیدی کلروپلاست و دستگاه فتوسنتزی را نمی سازند .

زمانی که گیاهچه هادر روشنایی جوانه می زنند کلروپلاست مستقیما توسط پروپلاستید ها ی موجود در جنین رسیده می شوند ، ولی اتیوپلاستها نیز زمانی که گیاهچه های اتیوله شده در معرض نور قرار بگیرند می توانند در داخل کلروپلاستها رسیده شوند.
اگر برگهای اتیوله شده قبل از قرار گرفتن در معرض نور با سیتوکینین تیمار شوند ، کلروپلاستها یی با گرانای گسترده تر تشکیل می دهند . همچنین کلروفیل و آنزیم های فتوسنتز بعد از قرار گرفتن در معرض نور با سرعت بیشتری ساخته می شوند. سیتوکینین قادر به تسریع این تغییرات در تاریکی نیست ، ولی تحریک رسیدگی کلروپلاست تشکیل شده در معرض نور توسط سیتوکینین کاملا معلوم است این نتایج نشان می دهد که سیتوکینین ها ساخت پروتئین های فتوسنتزی را تسریع می کنند.

سیتو کینین ها می توانند سبب تحریک توسعه سلول شوند
سیتوکنین ها می توانند باعث توسعه سلول در بعضی بافتها و اندامها شوند . این اثر بیشتر در دولپه ایها یا برگهای لپه ای در گیاهانی مانند خردل ، خیار و آفتابگردان به وضوح دیده می شود . لپه های این گونه ها به علت توسعه سلول در طول رشد گیاهچه ها بزرگ می شوند . تیمار سیتوکینین توسعه اضافی سلول را بدون اینکه افزایشی در وزن خشک لپه های تیمار شده ایجاد کند ، تسریع می کند .
سیتوکینین ها سنتز پروتئین راتنظیم می کنند
– مدارک خوبی وجود دارد که سیتوکینین ها در تنظیم سنتز پروتئین ایفای نقش می کنند . پلی ریبوزوم ها دستگاههای سنتز پروتئین هستند . آنها دارای مولکولهای پیام آور RNA میباشند که به ریبوزوم های زیادی متصل هستند . هر ریبوزوم در مرحله مختلفی از ترجمه mRNA به پلی پپتید قرار دارد.

اتیلن ( Ethylene)
اثرات فیزیولوژیکی اتیلن روی رشد گیاهان 75 سال است که شناخته شده است اتیلن یک گاز تبخیر شدنی است که بر اثر احتراق ناقص ترکیبات پر کربن مانند ذغال سنگ ، نفت و گاز طبیعی تولید می شود . اتیلن یک جزء تشکیل دهنده دود ، گاز و دود اگزوز اتومبیلها و سایر گازهای صنعتی است.
برخی از علائم و نشانه های این اثرات زیان آور شامل ریزش برگها ، پیچش غیر عادی پهنک برگ و دمبرگ و دمگل ، بی رنگ شدن گلبرگهای گل ، تورم ساقه ،ممانعت از طویل شدن ساقه و ممانعت از رشد ریشه بود که سرانجام منجر به شناسایی حضور اتیلن در گاز مزبور شد .

تحقیقات فیزیولوژیکی بعدی منجر به کشف این نکته شد که گیاهان در ضمن رشد و نمو خود از طریق مراحل متابولیکی اتیلن تولید می کنند .خصوصا میوه های در حال رسید ن مقادیری اتیلن سنتز می کنند که سبب تجمع غلظتهای نسبتا زیاد اتیلن در داخل فضاهای بین سلولی بافت میوه می شود . اتیلن همچنین در سایر بافتها و اندامها مانند گلها ، برگها ، ساقه ها ، ریشه ها ، غده ها و دانه ها تولید می شود. مقدار اتیلن موجود دربافت گیاهی خیلی کم و معمولا کمتر از است ، ولی محتمل است که غلظتهای زیاد آن در زمانهای معین ضمن رشد و نمو، در محل و بافت بخصوصی از گیاه تولید شود.

اثرات فیزیولوژیکی اتیلن
شامل خمیدگی برگ ( اپی ناستی)، ریزش برگها ، تورم ساقه ،ممانعت از رشد ساقه و ریشه ، رسیدن میوه ها ،و بی رنگ شدن گلبرگها می باشد . بدوا عقیده بر این بود که این اثرات بر روی رشد به علت وجود مقادیر نسبتا زیاداتیلن در محیط خارج می تواند باشد . با کشف اینکه گیاهان ، اتیلن سنتز کرده خودشان را به محیط رها می کنند ، این احتمال داده شد که اتیلن داخلی ( گیاهی) ممکن است بعنوان یک هورمون رشد عمل کند.اکنون عقیده بر آن است که اتیلن یک هورمون رشد گیاهی است و نشان داده شده است که در بسیاری مراحل فیزیولوژیکی شرکت دارد.

اتیلن گسترش و بزرگ شدن را در جهت طولی ممانعت می کند و گسترش را در جهت عرضی تحریک می کند چنانکه به نظر می رسد که ساقه متورم شده است.

بعلاوه ، اتیلن تغییر در عکس العمل ژئوتروپیسمی را در بافت ساقه اتیوله تحریک می کند . این مرحله نیز تحت تاثیر آکسین است.
همچنین ،اتیلن ریزش برگها ،ساقه ها ، گلها و میوه ها را تسریع می کند . اتیلن یک اثر متقابل با آکسینها در مراحل متابولیکی همراه و مربوط به پیری دارد . بسیاری از جنبه های علمی مربوط به انبار کردن میوه ها به اتیلن مربوط می شود . اتیلن مرحله رسیدن را در بسیاری میوه ها شروع می کند و در ضمن رسید ن میوه ها ، مقادیر نسبتا زیادی اتیلن تولید و به هوای اطراف آزاد می شود . مرحله رسیدن میوه ها می تواند از طریق خارج کردن اتیلن از هوای مجاور میوه های در حال نمو و یا با کاهش مقدار اکسیژن هوای اطراف میوه ها به یک سطح نازل به تاخیر انداخته شود .

میوه هایی مانند پرتقال ، لیمو ، گریپ فروت ، خربزه ، سیب ، موز و آوکادو را میتوان با کنترل مقدار گازهای موجود در هوای انبار مدتهای طولانی و قابل ملاحظه در انبار نگهداری کرد . میوه های نگهداری شده تحت شرایط کنترل شده در انبار را می توان در هر زمان ، با تغییر مقادیر گاز اکسیژن یا اتیلن در هوای اطراف میوه ها تحریک به رسیدن کرد.

اسید آبسیزیک (Abscisic acid)
سال ها بود که فیزیو لوژیست های گیاهی معتقد بودند که پدیده خواب بذر یا جوانه به علت ترکیبات بازدارنده می باشد و به همین دلیل آزمایشهایی را با هدف جداسازی آنها طرح ریزی کردند و این امر منجر به کشف اسید آبسیزیک به عنوان یکی از ترکیبات ممانعت کننده گردید.
آزمایشات اولیه شامل استفاده از کروماتوگرافی برای جداسازی عصاره های گیاهی ، همراه با سنجش حیاتی براساس رشد کولئو پتیل یولاف است . این تلاشها مبین یک ماده بازدارنده متفاوت از اکسین بود . ده سال بعد ، ماده ای موثر که باعث افزایش ریزش میوه های پنبه می شد .

به صورت خالص به دست آمد و ضمن کریستاله شدن آبسیزین ΙΙ نام گرفت. همان زمان ، ماده ای از برگهای درخت چنار به دست آمد که موجب افزایش خواب جوانه می شد و دورمین نام گرفت . زمانی که دورمین از نظر شیمیایی مورد آزمایش قرار گرفت مشابه آبسیزین ΙΙبود و به علت این که در فرایند ریزش دخالت داشت به نام اسید آبسیزیک (ABA) شناخته شد . چندین سال تصور می شد که القای ریزش یکی از اولین وظایف اسید آبسیزیک می باشد . اما اکنون می دانیم که اتیلن عامل اصلی ریزش اندام است.

اسید ابسیزیک باعث واکنش های فیزیولوژیکی متعددی در گیاهان عالی می شود
– خواب بذر . توانایی بذرها برای به تعویق انداختن فرایند رشد تا فراهم شدن زمان مناسب برای جوانه زنی یک خصوصیت خاص بذرها است. به نظر می رسد که ABA به عنوان هورمون القا کننده خواب عمل می کند .
– رشد . ABA از القای رشد ناشی از اکسین در گیاهچه ها جلوگیری می کند و به همین دلیل ABA نیز هورمون بازدارنده رشد نامیده می شود.
– تنش و انسداد روزنه ای . نقش ABA در تنش های یخ زدگی ، شوری و آب باعث شده است که ABA را به عنوان هورمون تنش شناسایی کنند . ABA در بسته شدن روزنه بسیار موثر است و انباشته شدن آن در برگهای تحت تنش ، نقش مهمی در کاهش تلفات آب به وسیله تعرق در شرایط تنش آب ایفا می کند .

جذب آب . کاربرد ABA بر روی بافت های ریشه جریان آب و جریان یون را تحریک می کند که نشانگر این است که اسید آبسیزیک پتانسیل فشاری را نه تنها به وسیله کاهش تعرق ، بلکه به وسیله افزایش جریان آب درون ریشه تنظیم می کند . ABA جریان آب را به وسیله افزایش هدایت هیدرولیکی ( کاهش مقاومت در برابر آب ) و به وسیله افزایش جذب یون ، که سبب افزایش اختلاف پتانسیل آب بین خاک و ریشه می شود ، افزایش می دهد. علاوه بر این ABAرشد ریشه و ظهور ریشه های جانبی را تحریک می کند ، در حالی که مانع از رشد برگها می شود . این اثرات متضاد ABA روی ریشه و برگ ها سبب کاهش سطح برگ و افزایش سطح ناحیه جذب آب ریشه می شود که به تحمل گیاه در شرایط تنش خشکی کمک می کند .

ریزش و پیری. اسید آبسیزیک ابتدائا به عنوان یک عامل ریزش برگ جداسازی شد . با این وجود ثابت شده است که اسید آبسیزیک ریزش اندام ها را صرفا در تعداد کمی از گونه ها تحریک می کند و اولین هورمونی که سبب ریزش می شود ، اتیلن است . از طرف دیگر ، ABA به وضوح در پیر شدن دخالت دارد و از طریق تسریع پیری ممکن است به طور غیر مستقیم تشکیل اتیلن را افزایش دهد و ریزش را تحریک کند . پیری آخرین مرحله تکاملی قبل از مرگ یک عضویا کل موجود می باشد.


تعداد صفحات : 445 | فرمت فایل : .ppt

بلافاصله بعد از پرداخت لینک دانلود فعال می شود