نانوحسگرها و انواع آنها
حسگر چیست؟
حسگریک وسیله ی الکتریکی است کـه تغـییرات فیزیکـی یا شیمیایـی را اندازه گیری می کند وآنها را به سیگنالهای الکتریکی تبدیل می نماید. حسگرها درواقع ابزار ارتباط ربات با دنیای خارج وکسب اطلاعات محیطی ونیز داخلی می باشند. ویا به طور کلی ابزارهایی هستند که تحت شرایط خاص ازخود واکنشهای پیش بینی شده ومورد انتظار نشان می دهند. شاید بتوان دماسنج را جزء اولین حسگرهایی دانست که بشرساخت.
ساختار کلی یک حسگر:
درطراحی یک حسگر دانشمندان علوم مختلف مانند بیوشیمی، بیولوژی، الکترونیک، شاخه های مختلف شیمی و فیزیک حضوردارند. قسمت اصلی یک حسگرشیمیایی یا زیستی عنصرحسگر آن می باشد. عنصرحسگر در تماس با یک آشکارساز است. این عنصرمسئول شناسایی و پیوند شدن با گونه ی مورد نظر در یک نمونه ی پیچیده است. سپس آشکارساز سیگنالهای شیمیایی را که در نتیجه ی پیوند شدن عنصرحسگر با گونه ی موردنظر تولید شده است را به یک سیگنال خروجی قابل اندازه گیری تبدیل می کند. حسگرهای زیستی بر اجزای بیولوژیکی نظیرآنتی بادی ها تکیه دارند. آنزیمها ، گیرنده ها یا کل سلولها می توانند به عنوان عنصر حسگرمورد استفاده قرار گیرند.
خصوصیات حسگرها:
یک حسگرایده آل باید خصوصیات زیررا داشته باشد :
1- سیگنال خروجی باید متناسب با نوع و میزان گونه ی هدف باشد.
2- بسیار اختصاصی نسبت به گونه مورد نظر عمل کند.
3- قدرت تفکیک و گزینش پذیری بالایی داشته باشد.
4- تکرارپذیری و صحت بالایی داشته باشد.
5- سرعت پاسخ دهی بالایی داشته باشد ( درحد میلی ثانیه) .
6- عدم پاسخ دهی به عوامل مزاحم محیطی مانند دما ، قدرت یونی محیط و …
نانوحسگرها:
با پیشرفت علم در دنیا و پیدایش تجهیزات الکترونیکی و تحولات عظیمی که در چند دهه ی اخیر و درخلال قرن بیستم به وقوع پیوست نیاز به ساخت حسگرهای دقیق تر،کوچکتر و دارای قابلیتهای بیشتر احساس شد. امروزه از حسگرهایی با حساسیت بالا استفاده می شود به طوریکه در برابر مقادیر ناچیزی از گاز، گرما و یا تشعشع حساس اند. بالا بردن درجه ی حساسیت، بهره و دقت این حسگرها به کشف مواد و ابزارهای جدید نیاز دارد. نانو حسگرها، حسگرهایی در ابعاد نانومتری هستند که به خاطرکوچکی و نانومتری بودن ابعادشان از دقت و واکنش پذیری بسیار بالایی برخوردارند به طوری که حتی نسبت به حضور چند اتم از یک گاز هم عکس العمل نشان می دهند.
انواع نانو حسگرها:
نانوحسگرها براساس نوع ساختارشان به سه دسته ی نقاط کوانتومی ، نانولوله های کربنی و نانوابزارها تقسیم بندی می شوند:
1. استفاده از نقاط کوانتومی درتولید نانو حسگرها:
نقاط کوانتومی به عنوان بلورهای نیمه هادی کوچک تعریف می شوند. با کنترل ابعاد نقاط کوانتومی، میدان الکترومغناطیسی نور را دررنگها و طول موجهای مختلف، منتشرمی کند. به عنوان مثال، نقاط کوانتومی از جنس آرسنیدکادمیوم با ابعاد 3 نانومتر نور سبز منتشر می کند؛ درحالی که ذراتی به بزرگی 5/5 نانومتر از همان ماده نور قرمز منتشرمی کند. به دلیل قابلیت تولید نور در طول موجهای خاص نقاط کوانتومی ، این بلورهای ریز در ادوات نوری به کارمی روند. دراین عرصه از نقاط کوانتومی در ساخت آشکارسازهای مادون قرمز، دیودهای انتشار دهنده ی نورمی توان استفاده نمود.
آشکارسازهای مادون قرمز از اهمیت فوق العاده ای برخوردارند. مشکل اصلی این آشکارسازها مسئله ی خنک سازی آنهاست. برای خنک سازی این آشکارسازها از اکسیژن مایع وخنک سازی الکترونیکی استفاده می شود. این آشکارسازها برای عملکرد صحیح باید دردماهای بسیار پائین، نزدیک به 80 درجه کلوین کارکنند، بنابراین قابل استفاده در دمای اتاق نیستند، درصورتی که از آشکارسازهای ساخته شده با استفاده از نقاط کوانتومی می توان به راحتی در دمای اتاق استفاده کرد.
2. استفاده ازنانولوله ها درتولید نانوحسگرها:
نانو لوله های کربنی تک دیواره و چند دیواره به علت داشتن خواص مکانیکی و الکترونیکی منحصر به فردشان کاربردهای متنوعی پیدا کردند که از جمله می توان به استفاده از آنها به عنوان حسگرهایی با دقت بسیار بالا برای تشخیص مواد در غلظتهای بسیار پائین و با سرعت بالا اشاره کرد.
به طورکلی کاربرد نانو لوله ها در حسگرها را می توان به دو دسته تقسیم کرد:
الف ) نانولوله های کربنی به عنوان حسگرهای شیمیایی:
این حسگرها می توانند دردمای اتاق غلظتهای بسیارکوچکی از مولکولهای گازی با حساسیت بسیاربالا را آشکارسازی کنند. حسگرهای شیمیایی شامل مجموعه ای از نانولوله های تک دیواره هستند و میتوانند مواد شیمیایی مانند دی اکسید نیتروژن ) NO2 ) وآمونیاک ( NH3 ) را آشکارکنند. هدایت الکتریکی یک نانولوله نیمه هادی تک دیواره که درمجاورت ppm200 از NO2 قرارداده می شود، می تواند در مدت چند ثانیه تا سه برابر افزایش یابد و به ازای اضافه کردن فقط 2% NH3 هدایت دو برابر خواهد شد. حسگرهای تهیه شده ازنانولوله های تک دیواره دارای حساسیت بالایی بوده ودردمای اتاق هم زمان واکنش سریعی دارند. این خصوصیات نتایج مهمی درکاربردهای تشخیصی دارند.
ب) نانولوله های کربنی به عنوان حسگرهای مکانیکی:
هنگامی که یک نانولوله توسط جسمی به سمت بالا یا پائین حرکت می کند، هدایت الکتریکی آن تغییر می یابد. این تغییر در هدایت الکتریکی، با تغییر شکل مکانیکی نانولوله کاملا ً متناسب است. این اندازه گیری به وضوح امکان استفاده از نانولوله ها را به عنوان حسگرهای مکانیکی نشان می دهد. یا می توان با استفاده از مواد واسط مانند پلیمرها در فاصله ی میان نانولوله های کربنی وسیستم، نانولوله های کربنی را برای ساخت بیوحسگرها توسعه داد. شبیه سازی های دینامیکی نشان می دهد که برخی پلیمرها مانند پلی اتیلن می توانند به صورت شیمیایی با نانولوله کربنی پیوند یابند. همچنین مولکول بنزن نیز می تواند به وسیله ی پیوندهای واندروالس روی نانولوله ی کربنی جذب شود. این تحقیقات کاربردهای بسیار متنوع و وسیع نانولوله ها ی کربنی را نشان می دهد. تحقیق دراین زمینه هنوزدرحال توسعه وپیشرفت است ومطمئنا ً درآینده ای نه چندان دور شاهد به کارگیری آنها درابزارها و صنایع مختلف خواهیم بود.
3. استفاده ازنانو ابزارها درتولید نانوحسگرها:
با استفاده از این حسگرها شناسایی مقادیر بسیار کم آلودگی شیمیایی یا ویروس و باکتری در سامانه ی کشاورزی وغذایی ممکن است. تحقیقات درزمینه ی نانوابزارها جزء پژوهشهای علمی به روز دنیاست.
نانو حسگرها و کنترل آلودگی هوا:
یکی از نیازهای مهم و اساسی در ارتباط با کنترل آلودگی محیط زیست، پایش مستمرآلودگی هواست. با استفاده از نانوحسگرها پیشرفت موثری در زمینه ی کنترل آلودگی هوا صورت گرفته است. یکی از این راهکارها اختراع غبارهای هوشمند می باشد. غبارهای هوشمند مجموعه ای از حسگرهای پیشرفته به صورت نانو رایانه های بسیارسبک هستند که به راحتی ساعتها درهوا معلق باقی می مانند. این ذرات بسیار ریز از سیلیکون ساخته می شوند و می توانند ازطریق بی سیم موجود درخود اطلاعات موجود در خود را به یک پایگاه مرکزی منتقل کنند. سرعت این انتقال حدود یک کیلوبایت در ثانیه است. هم چنین حسگرهایی از جنس نانولوله های تک لایه ساخته شده اند که می توانند مولکولهای گازهای سمی را جذب کنند و همچنین آنها قادر به شناسایی تعداد معدودی از گازهای مهلک موجود درمحیط هستند. محققان معتقدند این نانوحسگرها برای شناسایی گازهای بیوشیمیایی جنگی و آلاینده های هوا کاربرد خواهند داشت.
نانوحسگرها و انواع آنها
آیا تا به حال هوا را داخل سرنگی محبوس کرده اید تا آن را تحت فشار قرار دهید؟
چه اتفاقی می افتد وقتی پیستون سرنگ را فشار می دهید؟
هوا چگونه متراکم می شود؟ چگونه در یک فضای کوچکتر جا می گیرد؟
یک تکه اسفنج را می توان در فضای کوچکتری متراکم کرد. علت تراکم اسفنج این است که در آن سوراخهای ریزی وجود دارد، وقتی اسفنج را فشار می دهیم هوای داخل این سوراخها خارج می شود و ماده جامد اسفنج به هم نزدیکتر می گردد. درست مثل زمانی که یک تکه اسفنج خیس را فشار می دهید؛ آب از سوراخهای اسفنج خارج و اسفنج متراکم می شود. "بویل"، دانشمند انگلیسی در سال 1662 میلادی مقداری جیوه – که فلزی مایع است- را در یک لوله شیشه ای پنچ متری ریخت. این لوله خمیده به شکل حرف انگلیسی U و یک سمت آن مسدود بود. بویل مشاده کرد که با افزودن جیوه هوای به دام افتاده در سمتی که بسته است، متراکم می شود و فضای کمتری اشغال می کند. بویل نتیجه گرفت که هوا باید از ذرات بسیار کوچک، یعنی اتمهای ریز، تشکیل شده باشد. میان اتم ها فضایی است که در آن هیچ چیز نیست. وقتی هوا متراکم می شود، اتم ها به هم نزدیکتر می شوند. بویل همان سال ها در کتابی نوشت: "عنصرها را باید با آزمایش کشف کرد. شیمیدانها باید بکوشند تا هر چیزی را به مواد ساده تر تجزیه کنند، آن ماده یک عنصر است."
دانشمندان بر مبنای این توصیه بویل، تا اواخر قرن هجدهم حدود 30 عنصر گوناگون کشف کردند و مواد مرکب زیادی را که از این عناصر ساخته شده بود را بررسی کردند. بسیاری از مواد مرکب بررسی شده تا آن زمان از مولکول های ساده ساخته شده بودند و هر کدام بیش از چند اتم نداشتند. کافی بود فهرستی از انواع گوناگون اتمها تهیه شده و گفته شود که در هر ماده مرکب از هر نوع اتم چند عدد وجود دارد. در سال 1824 میلادی (1203 شمسی) "یوستون لیبینگ" و "فردریخ وهلر"، شیمیدان آلمانی درباره دوماده مرکب متفاوت تحقیق می کردند. هریک از آنها برای ماده مرکب خود فرمولی بدست آورد و نشان داد که در آن چه عناصری و از هر عنصر چند اتم وجود دارد. وقتی آنها نتایج کار خود را اعلام کردند معلوم شد که هر دو ماده دارای فرمول یکسانی هستند. با اینکه این دو ماده با هم متفاوت بودند و از هر جهت خواص گوناگونی داشتند، مولکولهای آنها از عناصر یکسان تشکیل شده و حتی عده اتمهای هر عنصر در هر دو ماده یکسان بود. به این ترتیب مشخص شد که تنها جمع کردنِ عده اتمهای موجود در یک مولکول کافی نیست. و این اتمها باید آرایش ویژه ای داشته باشند. بنابراین، آرایش متفاوت سبب تفاوتِ مولکولها می شود و خواص مواد با هم فرق خواهند داشت.
با توجه به اینکه هم مولکولها و هم اتمها به قدری کوچک هستند که دیده نمی شوند، شیمیدانان چگونه می توانند نوع آرایش اتم ها را در مولکولها بیابند؟
نخستین گام را در این راه، "ادوارد فرانکلندِ" انگلیسی برداشت. او مولکول های آلی را با برخی از فلزات ترکیب کرد و دریافت که اتمِ یک نوع فلزِ، همیشه با تعداد مشخصی از مولکول های آلی ترکیب می شود. او نتیجه گرفت که هر اتم توانایی و ظرفیت خاصی برای ترکیب با عناصر دیگر دارد. او اسم این خصلت را "والانس" گذاشت. "والانس" کلمه ای لاتین به معنای "ظرفیت" یا "توانایی" است. برای مثال وقتی می گوییم:"ظرفیت هیدروژن "یک" است"، یعنی اتم هیدروژن تنها با یک اتم دیگر می تواند ترکیب شود.
ظرفیت اکسیژن "دو"، نیتروژن "سه" و کربن "چهار" است. اسکات کوپرِ اسکاتلندی، نیز در 1858 میلادی نظریه "پیوندهای شیمیایی" را مطرح کرد. او معتقد بود که اتمها با "قلاب" یا "پیوند" به یکدیگر متصل می شوند و مولکولهای مختلف را تشکیل می دهند. طبق نظریه او، هر اتم به اندازه "ظرفیت" یا "والانس" خود می تواند با اتمهای دیگر پیوند بدهد. کوپر همچنین پیشنهاد کرد که اتم ها را با توجه به ظرفیتشان و تعداد پیوندهایی که می توانند با سایر اتمها داشته باشند، به صورت ذیل نمایش دهند:
به این ترتیب می توانیم مولکول ها را با رسم پیوندهای میان اتم ها، به شکل زیر نشان بدهیم:
استفاده از روش فوق برای نشان دادن ساختمان مولکول های کوچک و غیر آلی، به راحتی مقدور بود، اما در مورد مولکول های بزرگتر و مواد مرکب آلی، مشکلاتی وجود داشت که گاه باعث گمراهی می شد. از اینرو "ککوله" تلاش کرد تا مشکل ظرفیت را در موردِ مواد مرکب آلی برطرف کند. "فردریش آگوست ککوله" با توجه به این مساله که هر اتم کربن ظرفیت اتصال به چهار اتم دیگر را دارد، توانست مسایل مربوط به تعداد زیادی از مولکول ها -که ساختمان آنها تا آن زمان معمّا به نظر می رسید- را حل کند.
امروزه نیز از همین مدل برای نشان دادن مولکولها و همچنین توضیح خواص آنها استفاده می شود.
اما شیمی دانان ها چگونه می توانند بین ساختار مولکول و خواص آن ارتباط برقرار کنند؟
مواد مختلف بسته به این که از چه عناصر تشکیل شده اند و دارای چه آرایشی هستند، خواص مختلفی دارند. برای مثال موادی که خاصیت اسیدی از خود نشان می دهند در ساختار مولکولی خود اتم هیدروژنی دارند که به اکسیژن متصل است و آن اتم اکسیژن هم با یک عنصر نافلز مانند گوگرد، فسفر و… پیوند دارد. حال اگر به جای اتم نافلز، یک اتم فلز مانند سدیم، کلسیم یا … قرار گیرد، ترکیب به جای "خصلت اسیدی"، "خاصیت قلیایی" خواهد داشت.
در داروها و مولکول های بزرگ، خواص ترکیب به عوامل متعددی بستگی دارد. در نانو فناوری که هدف ساختن مولکولی جدید با رفتاری خواص است، یک دانشمند شیمی مولکولی با استفاده از تخصص خود، آرایشی از اتم ها را پیشنهاد می کند که خواصیت مورد نظر ما را داشته باشد. از سوی دیگر باید بدانیم مولکولها صرفاً آنچه ما روی کاغذ رسم می کنیم نیستند. مولکول ها دارای بعد هستند و فضا اشغال می کنند.
یک مولکول در فضا آرایشهای مختلفی را می تواند اختیار کند. درحال حاضر با استفاده از یک سری فنون خاص و به کمک کامپیوتر می توان آرایش های مختلف را پیش بینی کرده و چگونگی قرار گرفتن اتمها را در کنار یکدیگر را بررسی کرد. همچنین می توان حدس زد که هر آرایش مولکولی چه خواصی را موجب می شود. این کار نیز به واسطه اطلاعاتی که یک دانشمند شیمی مولکولی از مطالعه ساختارهای مختلف مولکولها بدست آورده است، امکان پذیر می باشد.
شاخه ای از نانوفناوری که با بهره گیری از شیمی مولکولی و روشهای محاسباتی فیزیکی و مکانیک کوانتومی، آرایشهای متنوع مولکولها را بررسی می کند را نانوفناوری محاسباتی می نامند.
نانوتکنولوژی در مهندسی پزشکی ، تحولی در درمان بیماری هایی مانند سرطان ، بیماری های قلبی-عروقی ، بیماری های اعصاب ، عفونت و بیماری های دیگر ایجاد کرده است. نانوتکنولوژی باعث به وجود آمدن ابزار کوچک ، سریع و ارزان با عملکرد های جدید شده است . تحولات نانوتکنولوژی در علوم مختلف، سنسور ها ، کامپیوتر ها باعث ظهور نانو و میکرو ربات ها شده است. میکرو و نانو ربات ها از یک سو با حجم زیادی از اطلاعات سر و کار دارند و از سوی دیگر از طریق سنسور ها و عملگرها با جهان فیزیکی در ارتباط هستند.
نانورباتیک
نانورباتیک علم جدیدی است که شامل طراحی ، ساخت و برنامه نویسی نانو ربات است. نانورباتیک در ارتباط با موارد زیر کاربرد دارد:
1- ساخت ربات هایی با ابعاد نانو یا ساخت میکرو ربات هایی که از اجزای نانومتر یک تشکیل شده اند.
2- برنامه نویسی ربات ها
3- جابجایی ذرات نانومتریک و اسمبل کردن این ذرات
حیطه کاری نانو ربات ها درون بدن انسان است و می توانند مقدار ترکیبات مختلف را در بدن نشان داده و اطلاعات را در حافظه داخلی خود ذخیره کنند. نانو ربات ها قادر به معاینه یک بافت خاص بوده و خصوصیات بیوشیمیایی و بیومکانیک را با جزئیات کامل بررسی می کنند و به طور کلی شناسایی محیط بیولوژیک را به راحتی انجام می دهند. قابلیت های مطلوبی که یک نانو ربات باید داشته باشد عبارتند از:
تجمع هوشمند
هوشمند بودن نانو ربات ها در جمع شدن در یک محل خاص برای انجام عملیات پزشکی و اینکه پس از اتمام ماموریت،در صورت لزوم، پراکنده شوند.
رفتار های مشارکتی و همکاری
یعنی همکاری نانو ربات ها و هماهنگ عمل کردن آنها در ماموریت ها ، گاهی عملکرد دسته جمعی نانو ربات نتیجه بهتری دارد.
خود ترمیمی نانو ربات ها
برخی نانو ربات ها باید قادر باشند که به طور اتوماتیک خودشان را اسمبل کرده یا همانند موجودات تک سلولی تکثیر یابند و نیز در صورت صدمه دیدن بتوانند خودشان را تعمیر کنند.
برنامه ریزی و پردازش اطلاعات
پردازش اطلاعات جمع آوری شده از محیط بیولوژیک و برنامه نویسی کردن برای نانو ربات ها از اهمیت ویژه ای برخوردار است .
از نظر عملکردی نانو ربات ها به دو دسته تقسیم می شوند:
1- ربات های خودمختار: هر کدام از نانو ربات های این دسته به طور جداگانه دارای یک نانو کامپیوتر است که نانو ربات را کنترل کرده و باعث می شود که نانو ربات مستقل عمل کند.
2- ربات های Insect : این نوع ربات ها در یک ناوگان نانورباتیک قرار دارند که همگی تحت یک کامپیوتر مرکزی کنترل می شوند.
نانو ربات های پزشکی
انتظار می رود که بیشتر نانو ربات های اولیه پزشکی برای تشخیص بیماری و ترمیم ضایعات و عفونت ها به کار روند. این طراحی شامل سیستم مویرگی نیز می شود. حد اکثر قطر مویرگ ها 20 میکرون است و قطر متوسط آنها 8 میکرون است. طراحی نانو ربات های پزشکی باید به گونه ای باشد که این اندازه ها را در بر گیرد ، زیرا سلول های خونی باید از این دیواره ها عبور کنند. سلول های خون انعطاف پذیر هستند در حالی که نانوربات ها به این صورت نیستند لذا باید به سلول ها بچسبند. ماده اولیه ای که نانو ربات های پزشکی از آن ساخته می شوند عموما کربن است که می تواند در اشکال و فرم های مختلف وجود داشته باشد. طبیعت الگوی مناسبی برای ساخت نانو ربات است.لذا برای ساخت نانو ربات از مواد طبیعی موجود مثل DNA، پروتئین و رشته های پپتید استفاده می شود. به این نوع ربات ها بیو-نانو ربات اطلاق می شود. به طور کلی nano device هایی که در پزشکی کاربرد دارند ،جایگزین مناسبی برای سلول های بیمار یا نا مناسب است.
نانوسنسورها
نسل جدید سنسور ها،در مقیاس نانو، به سه دسته تقسیم میشوند:
1- سنسورهای فیبر نوری (اپتیکی)
2- سنسورهای مکانیکی
3- سنسورهای الکترونیکی
نانو سنسورهای اپتیکی
از این نانوسنسورها برای مطالعه متابولیسم در سلول های زنده استفاده می شود. پروب های فیبر نوری سر بسیار نازکی دارند (500-20 نانومتر) . هنگامی که نور به این فیبر تابیده می شود ، این سر نازک میدان ناپایداری تولید می کند.زیرا قطر این سر فیبر از طول موج نور کمتر است.وضوح تصویر با این پروب ها بسیار زیاد است. به دلیل این که این میدان ناپایدار حجم کوچکی از اطراف خود را تحریک می کند.
نانوسنسورهای مکانیکی
در مقیاس نانو پیوندهایی قوی بین ساختار ها با خواص مکانیکی یا الکترونیکی یا شیمیایی وجود دارد که ساخت وسائل نانومتریک بسیار حساس به محیط و مواد شیمیایی را امکان پذیر می سازد. به وسیله این حساسیت بسیار بالا تغییر شکل های مکانیکی و سیگنال های گرمایی وآکوستیک قابل تشخیص هستند. شکل های زیر نانولوله های تحت بارگذاری ها را نشان می دهند. فشار محوری و کشش و خمش در این نانو لوله ها تغییرات زیادی در خواص الکتریکی ماده ایجاد می کنند.
یک مدل از نانوسنسورهای مکانیکی-شیمیایی نانواهرم ها هستند. ایده اصلی این نانوسنسور ها این است که یک ماده بیولوژیک به اهرم متصل شود. این اتصال باعث تغییر فرم در اهرم می شود که می تواند تغییر در جرم یا تغییر در تنش سطح اهرم باشد. از این تغییرات برای حس کردن می توان استفاده کرد. یک طرف اهرم با یک پوشش حس کننده یا ملکول های گیرنده پوشانده می شود.هنگامی که این اهرم در معرض محلول یا محیط خاصی قرار بگیرد، ملکول های مشخص یا هدف به آن می چسبند،که با این اتصال سطح انرژی اهرم تغییر کرده ،تغییر طول در اهرم ایجاد می کند.
نانومحرک هاعملکرد این المان در مقیاس ملکولی ایجاد حرکت، نیرو، سیگنال یا ذخیره کردن اطلاعات است. این ماشین ها انرژی ذخیره شده الکتریکی را به حرکت مکانیکی تبدیل می کنند. این تبدیل به دلیل وجود ارتباطات قوی بین ساختار ها است.به طور کلی کنترل حرکات مکانیکی در مقیاس ملکولی یکی از اهداف اصلی نانوتکنولوژی است.ماشین های ملکولی بسیار مورد توجه هستند زیرا:
داشت که دارو هنگام حمل تجزیه نشود، برای همین داروها را باید در محفظه ها1- بازده بسیار بالا یی دارند.
2- به دلیل خاصیت خود ترمیمی برای استفاده به تعداد انبوه قیمت مناسبی خواهند داشت.
3- به طور طبیعی در بدن وجود دارند.
نانومانیپیولیتور
نانومانیپیولیتور سیستمی است که به کمک آن و سیستم های بصری ، می توان ملکول ها و ذرات نانومتر یک را لمس، مشاهده و جابجا کرد.
کاربرد نانورباتیک در پزشکی
نانومدیسین
نانومدیسین در واقع استفاده از نانوتکنولوژی در درمان،تشخیص و کنترل سیستم های بیولوژیک است،که شامل شناسایی هدف مربوطه و انتخاب حامل های مناسب برای دست یابی به پاسخ های مناسب و حداقل ساختن اثرات جانبی داروها است. در زمینه نانومدیسین، نیازی به تغییر دادن ترکیبات دارویی نبوده و فقط طریقه حمل آن باید تغییر کند. این سیستم دارای یک حامل است که دارو توسط آن قسمت حمل می شود. مشخصه مهم یک سیستم دارو رسان موثر، توانایی برای انجام انتقال هدف دار و ک هایی)قرار داد. ماده حامل دارو باید با دارو سازگار بوده تا دارو به راحتی با آن پیوند نترل شده دارو است. برای این منظور داروها باید باسرعت مناسبی آزاد شوند. آزاد شدن سریع دارو باعث عدم جذب مناسب و اثرات جانبی دیگر دارد. به علاوه باید توجه یی(کپسول برقرار کند.
نانو جراحی
روش های جراحی کلاسیک به صورت ماکرو هستند؛ اما بعضی از جراحی های خاص مثل جراحی چشم نیازمند وسایل و ابزار ظریف تر و کوچک تر شدند. لذا میکرو جراحی ظهور کرد. در چند سال اخیر کوچک سازی،پیشرفت های زیادی در جراحی ایجاد کرده است.اولین مزیت نانوجراحی کاهش شوک ها و زخم های ناشی از جراحی کلاسیک است. همچنین شکاف و برش در نانوجراحی وجود ندارند. همین مسائل باعث بهبودی سریع تر بیمار می شود. جراحی های معمولی سنگین و طاقت فرسا هستند؛ هم برای بیمار و هم برای جراح از یک طرف بیمار دچار ترس و دلهره، دردهای متعدد و زمان بهبودی طولانی شده و از طرف دیگر جراح به تمرکز، برای مدت طولانی احتیاج دارد تا جراحی را کامل و دقیق انجام دهد. اشتباهات جراح که ناشی از خستگی و دید کم هستند اجتناب نا پذیرهستند. در نانوجراحی،جراح از دسته هایی برای فرمان استفاده می کند تا بازوهای نانو ربات را که مجهز به ابزار جراحی کوچک هستند کنترل کرده و به محل مورد نظر برساند. بازوی دیگر نانو ربات دوربینی حمل می کند که جراح می تواند محیط درون بدن را مشاهده کند. معرفی دو مدل از میکرو- نانو ربات های ساخته شده .
منابع و مآخذ:
www.iranmedar.com
www.iranmedar.com
www.major-physics.blogfa.com
مجله New Scientist ژوئن
-22-