تارا فایل

بررسی نانو مواد و انواع آن و روش های تولید نانو ذرات و ساختار و خواص زئولیت ها و مقدمه ای بر کمومتری




عنوان:
نانو مواد و انواع آن و روش های تولید نانو ذرات و ساختار و خواص زئولیت ها و مقدمه ای بر کمومتریکس

فهرست مطالب

1-1-نانو مواد 5
1-2-انواع مواد نانو 6
1-2-1-نانو ذرات 6
1-2-2-مواد نانومتخلخل 6
1-2-2-2-نوع تخلخل 9
1-2-3-نانوبلورها 9
1-2-4-نانو حفره ها 9
1-3-روش های تولید نانو ذرات 10
1-3-1-سل ژل 10
1-3-2-فرایندهای شیمیایی مرطوب 11
1-3-3-فرآیند هیدروترمال 11
1-3-4-سنتز به روش محلول شفاف 13
1-3-5-سنتز به روش بازدارنده ی رشد 14
1-3-6-سنتز به روش فضای محبوس2 14
1-3-7-سنتز به روش میکروامولسیون 15
1-4-زئولیت 16
1-4-1-زئولیت های طبیعی 16
1-4-2-زئولیت های مصنوعی 17
1-3-4-ساختار و خواص زئولیت ها 18
1-5-زئولیت ZSM_5 19
1-5-1-عوامل موثر بر تبلور ساختار MFI 20
1-5-1-1- نسبت SiO2/Al2O3 در ژل 21
1-5-1-2-نسبت template/SiO2 در ژل 22
1-5-1-3- درجه رقت یا نسبت H2O/SiO2 23
1-5-1-4-نسبت M/SiO2 23
1-5-1-5-نسبت OH/Sio2 24
1-5-1-6- ماهیت منبع سیلیسی 25
1-5-2-تاثیر پارامترهای مختلف بر مورفولوژی زئولیتی 25
1-5-3- سنتز ZSM-5 در حضور آمینها 26
1-5-4-سنتز زئولیت ZSM-5 در حضور الکلها 27
1-6-طیف بینی جذب مادون قرمز 28
1-6-1-ناحیه مادون قرمز میانی : 29
1-6-2- طیف سنجی مادون قرمز تبدیل فوریه : 31
1-6-3-نمونه گذاری در طیف سنجی مادون قرمز: 31
1-7-طیف سنجی انعکاس-پخش: 33
1-8-طیف سنجی رزونانس مغناطیسی هسته : 34
1-8-1- طیف سنج رزونانس مغناطیسی هسته ای تبدیل فوریه تپشی 36
1-8-2-قاعده (N+1) شکاف اسپین – اسپین 37
1-8-2-1-هسته کربن -13 37
1-8-2-2-تغییرات مکان شیمیایی کربن -13 38
1-9-مقدمه ای بر کمومتریکس 38
1-9-1-طراحی ازمایش6: 39
1-9-1-1-تعریف فرایند مورد مطالعه 40
1-9-1-2-غربال کردن 40
1-9-1-3-انواعی از روش های طراحی فاکتورها: 40
1-9-1-4-بهینه سازی 4 40
1-9-1-5- کاهش زمان بری 7 40
1-9-1-6-مدل سازی کمی 41
1-9-1-7-روش سطح پاسخ 3 41
1-9-2-پردازش داده های چند متغیره 43
1-9-2-1- آنالیز فاکتوری 43
1-9-2-2- آنالیز فاکتوری تکاملی2 (EFA) 43
1-9-2-3-روش های آنالیز نرم 44
1-9-2-4-تفکیک منحنی چند متغیره – حداقل مربعات متناوب (MCR-ALS) 2 44
1-9-2-5- الگوریتم اجرای تکنیک MCR-ALS 45
فهرست مراجع و ماخذ : 47

1-1-نانو مواد
هنگامی که گروهی از اتم ها تجمع کرده و چند خوشه نانو متری را تشکیل دهند‍، زمینه تشکیل ذرات نانو فراهم شده و از هم پیوستن چند خوشه نانو متری ذرات نانو تشکیل می گردند. مقیاس نانو به هر ماده ای با اندازه مشخص گفته شده، که در علم نانو و فناوری نانو استفاده می شود. چشم غیر مسلح قادر به دیدن اجسام نانو متری نمی باشد؛ بنابراین به فناوری خاصی برای مشاهده این اجسام نیاز است. پیشوند نانو در اصل کلمه ای یونانی است. معادل لاتین این کلمه دوارف1 است که به معنی کوتوله و کوتاه قد است. قطر تار موی انسان تقریبا 75000نانو متر است، اگر 10 اتم هیدروژن به دنبال هم قرار گیرند،برابر یک نانو متر می شود.در طول سال های 1996تا 1998موسسه بین المللی تحقیقات فناوری2 حمایت از مطالعات و تحقیقات گسترده ای را در باره نانو ذرات و مواد نانو ساختار و نانو دستگاه ها به عهده گرفت. نتایج این تحقیقات و مطالعات نشان داد که پیشرفت در سه زمینه علمی و تکنولوژی، نانو را به زمینه تحقیقاتی منسجمی تبدیل کرده است این سه زمینه عبارتند از:
1- روش های سنتز جدید و پیشرفته که امکان کنترل اندازه و دستکاری واحدهای ساختاری نانومتری را ایجاد می کند.
2- ابزار شناسایی جدید و پیشرفته که امکان مطالعه در مقیاس نانو را ایجاد می کند.
3- بررسی و درک ارتباط بین نانو ساختارها و خواص آن ها و چگونگی مدیریت برآن.
جدول 1-1 مثال های نانو مواد و اندازه آن ها
نانو مواد اندازه
نانو بلورها و کلاسترها(نقاط کوانتومی) قطرnm 10-1 فلزات، نیمه هادی ها، مواد مغناطیسی

نانو ذرات دیگر قطر nm 100-1 اکسیدهای سرامیکی
نانو سیم ها قطر nm 10-5/0 اکسیدها،سولفیدها،نیتریدها
نانو لوله ها قطرnm 100-1 کربن،کالکوژنیدهای لایه ای
فلزات
نانو پروس های های جامد قطر منفذ nm10-5/0 زئولیت ها، فسفات ها و غیره
آرایه های دو بعدی (از نانو ذرات) µm 2 – nm2 فلزات،نیمه هادی ها،مواد مغناطیسی
سطح ها و فیلم های نازک ضخامت nm1000 -1 تعداد زیادی از مواد
1-2-انواع مواد نانو
1-2-1-نانو ذرات
نانو ذرات رایج ترین مواد در فناوری نانو می باشند. از آنجا که دارای ابعادی کمتر از طول موج مرئی اند، شفافند. افزایش نسبت سطح موثر به حجم این ذرات باعث می شود، تا زمانی که به عنوان کاتالیزور استفاده می شوند، موثر واقع شوند؛ چرا که سطح برخوردشان افزایش می یابد. خواص جالب نانو ذرات باعث شده تا کاربردهای زیادی در زمینه های زیست پزشکی، دارویی، صنایع شیمیایی، الکترونیک و صفحات خورشیدی، صیقل دهنده ها و رنگ ها داشته باشند، همچنین در شیشه های اتومبیل و پنجره ها استفاده می شوند.خواص خود تمیز شوندگی نانو اکسیدهای فلزی خاصی نظیر تیتانیوم اکسید، روی، آلومینیوم و آهن سیلیکات موجب استفاده آن ها در روکش های دیوارها و سرامیک ها می شوند. با توجه به رویه که این پژوهش مبتنی بر مطالعه نانو شیت های زئولیت، صرفا در این بخش نانو ذرات مرتبط با این مقوله بررسی می شوند.
1-2-2-مواد نانومتخلخل
مواد نانومتخلخل دارای حفره هایی در ابعاد نانو هستند و حجم زیادی از ساختار آن ها را فضای خالی تشکیل می دهد. نسبت سطح به حجم (سطح ویژه) بسیار بالا، نفوذپذیری یا تراوایی2زیاد، گزینش پذیری خوب و مقاومت گرمایی و صوتی از ویژگی های مهم آن ها می باشد.

با توجه به ویژگی های ساختاری، این مواد به عنوان تبادلگر یونی3, جداکننده 2، کاتالیزور، حس گر، غشا 3و مواد عایق استفاده می شوند. به موادی که تخلخل آنها بین 2/0 تا 95/0 نانومتر باشد نیز مواد متخلخل4می گویند. حفره ای که متصل به سطح آزاد ماده است حفره ی باز نام دارد که برای صاف کردن 5 غشا، جداسازی و کاربردهای شیمیایی مثل کاتالیزور و کروماتوگرافی (جداسازی مواد ) با استفاده از رنگ آن ها مناسب است. به حفره ای که دور از سطح آزاد ماده است حفره ی بسته می گویند که وجود آن تنها سبب افزایش مقاومت گرمایی و صوتی و کاهش وزن ماده شده و در کاربردهای شیمیایی سهمی ندارد. حفره ها دارای اشکال گوناگونی همچون کروی، استوانه ای، شیاری، قیفی شکل و یا آرایش شش گوش 6هستند. هم چنین تخلخل ها می توانند صاف یا خمیده یا همراه با چرخش و پیچش باشند [1[

مواد نانومتخلخل بر اساس اندازه ی حفره ها، مواد سازنده و نظم ساختار به سه گروه تقسیم بندی می شوند:

1-2-2-1-دسته بندی بر اساس اندازه ی حفره

1- میکرومتخلخل7: دارای حفره هایی با قطر کم تر از 2 نانومتر.
2- مزومتخلخل 8: دارای حفره هایی با قطر 2 تا 50 نانومتر.
3- ماکرومتخلخل9 :دارای حفره هایی با قطر بیش تر از 50 نانومتر.

بر اساس تعریف نانوفناوری، دانشمندان شیمی در عمل عبارت نانومتخلخل4را برای موادی که دارای دارای حفره هایی با قطر کم تر از 100 نانومتر هستند به کار می برند که ابعاد رایجی برای مواد متخلخل در کاربردهای شیمیایی است.

(1-1)-انواع سیلیکا بر اساس اندازه ی حفره: الف: ماکرومتخلخل، ب: مزومتخلخل، ج: میکرومتخلخل [2]

(1-2)-دسته بندی آیوپاک بر اساس اندازه حفره
1-2-2-2-نوع تخلخل
بر اساس شکل و موقعیت حفره ها نسبت به یکدیگر در داخل مواد متخلخل، حفره ها به چهار دسته زیر تقسیم می شوند:
حفره های راه به در2
حفره های کور3

حفره های بسته5
حفره های متصل به هم 2

(1-3)-نوع تخلخلها بر اساس شکل و موقعیت
1-2-3-نانوبلورها
در یک بلور، با کوچک تر شدن ذره، نسبت اتم های موجود در سطح به اتم های داخلی، افزایش می یابد. اتم های موجود در سطح رفتار متفاوتی از خود بروز و رفتار ماده را تحت تاثیر قرار می دهند. در فلزات این تغییر رفتار موجب افزایش استحکام، مقاومت الکتریکی و ظرفیت حرارتی ویژه و کاهش رسانایی حرارتی می شود.فلرات نانو بلوری در صنایع خودرو سازی، هوا فضا و صنایع ساختمانی کاربردهای متفاوتی دارند.
1-2-4-نانو حفره ها
این ذرات حفراتی کوچک تر از 100 نانومتر دارند. زئولیت ها دسته ای طبیعی از نانو حفره هاست. سطح ویژه این مواد بالاست( در حد چند صد مترمربع بر گرم)، به همین دلیل با قرار گرفتن مواد در حفره آن ها، خصلت کاتالیزوری آن ها به دلیل افزایش مساحت سطح، افزایش می یابد. خصلت جالب توجه این ذرات، انتخاب پذیری آن هاست که به دلیل اندازه ثابت حفره، اجازه عبور را تنها به برخی از مواد می دهند. از روش های ساخت آن ها، می توان به روش سل ژل و سوزاندن میسل های آلی درون دیواره های معدنی اشاره کرد. فیلتر کردن آب، خالص سازی آنزیم ها و داروها و تولید نیمه هادی ها، از جمله کاربردهای آن هاست.

(1-4)-نانوحفره های تولید شده در آلومینا، به روش آندایز خود نظم یافته

1-3-روش های تولید نانو ذرات

به طور کلی واکنش های شیمیایی برای تولید مواد می تواند در هر یک از حالت های جامد، مایع و گاز صورت گیرند. در اینجا به طور خلاصه به انواع روش های متداول سنتز نانو مواد زئولیت پرداخته میشود [3].
1-3-1-سل ژل6
روش سل- ژل برای تولید ذرات سرامیکی و اکسیدهای فلزی همگن با خلوص بالا به کارمی رود. این روش شامل تشکیل یک سوسپانسیون کلوئیدی (سل) است که به ژل های ویسکوز با مواد جامد تبدیل می گردد. پراکنده شدن ذرات با اندازه های کمتر از 100 نانو متر در داخل زمینه سیال را در اصطلاح سل یا کلوئید می گویند. روش سل- ژل فقط برای تولید اکسیدهای فلزی مفید است. این امر به دلیل وجود پیوندهای فلز- اکسیژن در پیش ماده های آلکوکسید است و ژل های تولیدی هیدروکسید یا اکسید خواهد بود. این فرآیند نسبت به

دیگر روش های تولید نانو ذرات اکسید فلزی، مزیت های ممتازی دارند که عبارتند از تولید پودرهای فوق العاده خالص به علت مخلوط شدن همگن مواد خام در مقیاس مولکولی و حجم تولید صنعتی نانو ذرات. از عیب های این روش، هزینه بالای پیش سازهای آلکوکسید و سمی بودن مواد اولیه مورد نیاز است [4و5].

(1-5)-محصولات قابل تولید با فرایند سل ژل
1-3-2-فرایندهای شیمیایی مرطوب7
فرآیندهای تولید نانو ذرات برپایه ی محلول شامل رسوب جامد از یک محلول اشباع، تبدیل و احیای شیمیایی فاز مایع و تجزیه پیش سازهای شیمیایی به کمک انجام ماورای صوت است. این عملیات به دلیل سادگی، تنوع و تطبیق پذیری و قابلیت استفاده با مواد پیش ساز ارزان قیمت مورد توجه می باشند. احیای نمک، یکی از روش

های مورد تایید برای تولید ذرات کلوئیدی فلزی است. این فرآیند شامل تجزیه نمک های فلزی در محیط های آبی یا غیر آبی و احیای کاتیون های فلزی است.
1-3-3-فرآیند هیدروترمال8
فناوری هیدروترمال می تواند در زمینه سنتز، رشد، دگرگونی و تبدیل مواد شیمیایی کاربرد داشته باشد. همچنین بسیاری از فرآیندهای دهیدراسیون، تخریب شیمیایی، استخراج و فرآیند های سونوشیمیایی و الکتروشیمیایی، و … می توانند با روش هیدرو ترمال صورت بگیرند. تقریبا سنتز تمامی ترکیبات معدنی با ساختارهای عنصری، اکسید، سیلیکات، ژرمانات، فسفات، کلکوژناید، نیترید، کربنات و … می توانند تحت روش های هیدروترمال صورت پذیرند. در زمینه سنتز مواد پیشرفته، بزرگترین ترکیبات تک بلوری کوارتز9 و زئولیت3 تاکنون بصورت مصنوعی با تکنولوژی هیدروترمال ساخته شده اند. روش هیدروترمال می تواند برای سنتز مواد کاربردی نظیر مواد مغناطیسی، اپتیکی پیزوالکتریک، سرامیک و .. در مقیاس بالا (تجاری) به صورت تک بلوری و چند بلوری به کار گرفته شود. تک بلورهای ایجاد شده با این روش بسیار خالص، بزرگ و فاقد نقص های بلوری (خصوصا نقص های جابجایی)هستند. پودرهای تهیه شده با فرآیند هیدروترمال دارای مزایای مقابل هستند: دارای ذرات مجزا، خلوص بسیار بالا (فاقد آلودگی)، غیرکلوخه ای، و با ریخت شناسی و ترکیب بلوری مشخص (معمولا تک بلوری) و بصورت تک پخش می باشند و به راحتی در حلال بازپخش می شوند. فرآیند هیدروترمال می تواند به صورت سازگار با محیط زیست در زمینه تخریب ضایعات و همچنین مونومریزاسیون بسیاری از ترکیبات پایدارو آلاینده طبیعت، جایگزین روش های ناکارآمد حاضر باشد. تمامی این کاربردها فناوری هیدروترمال را به یک رویکرد اساسی و کارا در زمینه های آزمایشگاهی، صنایع شیمیایی نوین و تولید مواد پیشرفته مبدل ساخته اند. از مزایای این روش می توان به تولید مواد پیشرفته با خلوص بالا، تجهیزات نسبتا ارزان قیمت، دمای پایین فرآیند، مصرف پایین انرژی و سازگاری کامل با محیط زیست اشاره نمود [6و7]. همچنین از ماکروویو نیز می توان استفاده کرد در هیدروترمال این روش برای سنتز مواد نانومتخلخل، ژل آبی شامل مواد اولیه و

مواد کمکی واکنش مانند عامل های هدایت ساختار 10، محیط واکنش را تشکیل داده و گرمای واکنش توسط امواج ریزموج تامین می شود [6].

(1-6)-سنتز هیدروترمال زئولیت
1-3-4-سنتز به روش محلول شفاف11
معمولا نانوزئولیتها از یک محلول آبی قلیایی حاوی منابع Si و Al و یونهای فلزات قلیایی (سدیم یا پتاسیم ) تهیه میشوند . در سنتز برخی از انواع زئولیت، یک "عامل هدایت کننده ی ساختاری آلی3" نظیر کاتیونهای آلکیل آمونیوم برای تشکیل ساختارهای ثانویه ی زئولیت نیاز است .این محلول شفاف اولیه میتواند تحت شرایط هیدروترمال قرار داده شود یا در فرآیند سل- ژل به کار گرفته شود. همانطور که گفته شد، محلولهای پیشران شفاف با یک مقدار اضافی از طاق سازهای آلی معمولابرای تهیه زئولیتهای

در سایز نانو استفاده میشوند. این سیستمها در طول فرآیند کریستاله شدن به هسته زایی سریع با کمترین میزان تجمع ذرات نیاز دارند. وابسته به ساختار زئولیت، تجمع ذرات میتواند با کاهش محتوای کاتیونهای قلیایی در سیستم پیشران یا با جایگزینی کامل باز معدنی به وسیله ی هدایت کننده ی ساختاری آلی نظیر تتراآلکیل-آمونیومها، بازداری شود. برای تهیه کریستالهای نانوزئولیت، سیستم پیشران باید درجه ی بالایی از فوق اشباعیت داشته باشد، زیرا فوق اشباعیت باعث افزایش سرعت هسته زایی، افزایش تعداد هسته ها و اندازه ی ذرات کوچکتر میشود. در ژلهای آلومینا سیلیکات، فوق اشباعیت به شدت تحت تاثیرHp است. علاوه براین Hp بالا باعث کاهش دمای سنتز میشود [8و9].
1-3-5-سنتز به روش بازدارنده ی رشد12
در این روش، یک افزودنی آلی غیر از هدایت کننده های ساختاری وارد سیستم میشود. این افزودنی با بازداری کردن از فرآیند رشد کریستالها منجر به تشکیل کریستالهای کوچکتر میشود. واکنش پذیری ماده ی بازدارنده و مقدار آن در مخلوط آغازین دو عامل تاثیرگذار میباشند. ماده ی افزودنی باید توانایی جذب سطحی و واکنش با سطح ذرات سیلیکات را داشته باشد تا از تراکم اضافی جلوگیری کند. غلظت بالای ماده ی بازدارنده باعث می شود اجزای آزاد آلومیناسیلیکات به میزان کافی برای تشکیل ساختار زئولیت در سیستم وجود نداشته باشد و در نتیجه کریستالی به دست نمی آید. از طرفی غلظت بسیار پایین بازدارنده اثر بازدارندگی کافی را نخواهد داشت [10].

1-3-6-سنتز به روش فضای محبوس2

اولین مورد از چنین سنتزی توسط ژاکوبسین و مادس 3 برای سنتز نانوکریستالهای زئولیتZSM-5 گزارش شده است. آنها در سال 1999 یک روش جدید برای سنتز زئولیت با توزیع اندازه ی کریستالهای کنترل شده تشریح نمودند. اصول سنتز به روش فضای محبوس این است که کریستالها در داخل فضاهای نیمه

متخلخل یک ماتریکس بی اثر سنتز میشوند. اندازه یحداکثر کریستالها توسط قطر خلل و فرج محدود میشود. بخش دشوار این روش نیاز به یک ماتریکس بی اثر و پایدار در طول شرایط انجام واکنش و نیاز
به توزیع سایز خلل و فرج مشخص در ماتریکس، برای داشتن توزیع سایز کریستال های همسان می باشد [10].

(1-7)-سنتز زئولیت ZSM-5 به روش فضای محبوس
1-3-7-سنتز به روش میکروامولسیون 13
استفاده از میکروامولسیون ها و خصوصا مایسل معکوس یکی از راه های سنتز کنترل شده نانوذرات است. بسیاری از نانوذرات در نانوراکتورهای مایسلی و تحت واکنش هایی نظیر فرآیندهای رسوبی، کاهش و هیدرولیز سنتز می شوند. روش های تولید نانومواد به صورت تک پخش 2 و با پخش اندازه 3 محدود منجر به افزایش کیفیت محصول می شوند. یکی از راه کارهای سنتزی جهت نیل به این هدف، استفاده از نانوراکتورها جهت سنتز نانوذرات می باشد. از جمله ساده ترین نانوراکتورهای مولکولی مایسل ها هستند. این اجتماعات مولکولی حاصل خود آرایی مولکول های سورفکتنت در حدفاصل فاز آبی و آلی است. میکروامولسیون ها مخلوط های همگن و تک پخش از مایسل ها هستند که از مخلوط کردن فاز آلی

(روغنی)، فاز آبی و پایدار کننده ها (سورفکتانت ها) با نسبت مشخصی تهیه می شوند. به طور عمومی سنتز نانوذرات در ساختارهای مایسلی به دو روش صورت می پذیرد. روش اول شامل مخلوط کردن دومحصول با ساختار مایسل معکوس اما حاوی واکنش گرهای مختلف است. واکنش با برخورد نانورآکتورها به یکدیگر، تلفیق آن ها و تبادل مواد بین دو مایسل صورت می پذیرد. در روش دوم، تنها از یک محلول مایسل معکوس استفاده می شود. در این حالت واکنش بین واکنش گر حل شده در مایسل و واکنشگر حل شده در حلال آلی اتفاق می افتد [11].

(1-8)-شمایی از روند سنتز نانوذرات با استفاده از روش میکروامولسیون
1-4-زئولیت
نخستین بار در سال 1756 بلورهای خاصی که در زیر شکاف های صخره ها تشکیل شده بودند توسط یک معدن شناس سوئدی به نام الکس فرودریک کرونستدت کشف شد او مشاهده کرد هنگام گرما دادن به بلورها مقدار زیادی آب به صورت بخار از آن خارج می شود بنابراین با توجه به دو لغت یونانی زین به معنای جوشیدن و لیتوس به معنای سنگ این بلور زئولیت (سنگ جوشان ) نامگذاری شد. خواصی از زئولیت ها مانند دهیدراسیون بدون تخریب ساختمان کریستال زئولیت ها، عبور نکردن برخی از مایعات مانند بنزین، الکل، کلروفرم و جیوه از زئولیت های دهیدراته، جذب سطحی گازهای هیدروژن، آمونیاک، سولفید هیدروژن و هوا

روی زئولیت و جذب سطحی مولکول های الی کوچک و دفع مواد آلی بزرگتر توسط زئولیت های دهیدراته محققان را بسوی این علم جذب نمود، زئولیت ها به طور کلی به دو دسته تقسیم میشوند .
1-4-1-زئولیت های طبیعی
حدود 40 نوع زئولیت در طبیعت شناخته شده است که برخی از آن ها استفاده صنعتی دارند. زئولیت های طبیعی نتیجه غیر مستقیم فعالیت های آتشفشانی بوده و از طریق دگرگونی هیدروترمال بازالت، خاکستر اتشفشانی و سنگ پا تولید میشوند. اکثر زئولیت های طبیعی دارای نسبت Si/Alکم می باشند. زئولیت های با تخلخل زیاد مانند 14FAU که نمونه ی مصنوعی آن XوY میباشد در طبیعت بسیار کمیاب هستند دو نوع زئولیت طبیعی با ارزش ،کلینوپتیلولیت (HEU)2 و موردینت ها (MOR)3برای تعویض یون رادیو اکتیو ،کاربردهای کشاورزی و جاذب استفاده می شوند. فعالیت کاتالیستی زئولیت ها ی طبیعی بدلیل خلوص و سطح تماس کم آنها محدود می باشد .
1-4-2-زئولیت های مصنوعی
زئو لیت های مصنوعی در مقایسه با زئولیت های طبیعی از خلوص بالایی برخوردا بوده و دارای دامنه ی کاربردی وسیع تری می باشند محققین پیش ازسال 1950جهت تولید زئولیت ها درصدد ساخت ژئوکانی های طبیعی شناخته شده بودند و تصور می کردند که تشکیل زئولیت ها مستلزم درجه حرارتی در حدود 200تا400 درجه سانتیگراد و ده ها فشار اتمسفری می باشد ولی در سال 1975موفق شدند زئولیت ها را در دمایی پایین تر (100>) در مقیاس صنعتی تهیه نمایند از لحاظ منبع Si و نسبت Si/Al زئولیت ها به سه دسته زیر تقسیم بندی میشوند :
1-زئولیت ها با مقدار کم سیلیکا
2-زئولیت ها با مقدار متوسط سیلیکا
3 -زئو لیت ها با مقدار زیاد سیلیکا

از مهم ترین و پر کابردترین زئولیت ها ی مصنوعی می توان به CHA3 ,MFI ,MEL2 ,FER15 و AFI4 اشاره نمود که زئولیت MFI که کاربرد صنعت فراوان دارند.

(1-9)- برخی از زئولیت های رایج
1-3-4-ساختار و خواص زئولیت ها
زئولیت ها آلومینو سیلیکات های کریستاله با خلل و فرج های ریز شامل واحدهای چهار وجهی سازنده ی ساختار اسکلت می باشند که سیستمی از خلل وفرج و حفرات در اندازه ی مولکول تولید می کنند [12] . ساختار آن ها آنیونی بوده و شامل کانال ها و حفراتی است [13]. زئولیت ها از چهاروجهی AlO4 و SiO4که از اتصال اتم اکسیژن تشکیل می شوند .برای یک ساختار کامل سیلیسی ، واحدهای SiO4گرایش به سمت

تشکیل SiO2با چهار بار منفی دارند با مشارکت آلومینیوم در ساختار سیلیکا وجود سه بار مثبت Al کل ساختار دارای یک بار منفی می شود و برای اینکه از لحاظ بار الکتریکی خنثی باشد نیازمند یک ساختار کاتیونی آلی- معدنی می باشد . ترکیب شیمیایی زئولیت که تعیین کننده ی خواص آن می باشد را می توان به صورت زیر بیان کرد
M_(y/m)^(m+). [(SiO2) x. (AlO2-) y] .zH2O
در فرمول M نشانگر کاتیون اضافه شده با بار m است این کاتیون توسط پیوند الکترواستاتیکی به ساختار متصل شده و در شبکه ی کریستال سیار می باشد ، xوy اعداد صحیح هستند و z تعداد مولکول آب را نشان می دهد. ساختار زئولیت ها توسط واحدهای سازنده ،چیدمان ،اندازه و شکل هندسی حفرات تعیین میشود. ساختار بدنه ای زئولیت می تواند با رشد منظم واحدهای ساختاری بلوک های چهار وجهی TO4 که (T=Si ,Al) ساخته شوند در ساختار زئولیت ها پیوند Si-O-Al و Si-O-Siشبکه و چیدمان سه بعدی چهار وجهی های که واحده های سازنده ی پایه UBB است را تشکیل میدهند. در برخی موارد زئولیت ها از ترکیب واحد های سازنده ی مرکب (CBU) و (BBU) ها تشکیل می شود. این CBU ها می توانند حلقه های تک یا زنجیره های تک باشند و یا ساختارهای پیچیده تر مانند زنجیره های شاخه دار یا ساختارهای چندوجهی بسازند.برای اکثر زئولیت ها اندازه ی حفره یک ویژگی کلیدی به شمار می آید. محدوده ی دهانه ی کانال ها یا حفره ها از 3/0 تا ۱ نانو متر بسته به ساختار زئولیت متغیر می باشد[14]
1-5-زئولیت ZSM_5
یکی از انواع زئولیت ها،ZSM-5 می باشد که به عنوان کاتالیست کاربرد وسیعی در صنعت و محیطی دارد. طراحی کاتالیست زئولیت نقش معنی داری در توسعه فرایندهای جدید و پیشـرفته تکنولـوژی در آینده خواهد داشت. به دلیل کاربردهای کاتالیتیکی زئولیـتZSM-5، در تعـداد زیـادی از فراینـدهای شیمیایی و پتروشیمی، این نوع زئولیت ماده ای بسیار مفید در صـنعت مـی باشـد. زئولیت MFI در سال۱۹۷۰ توسط شرکت تحقیقاتی موبایل کشف شد. استفاده از زئولیت ZSM-5) MFI و سـیلیکات) در فرایندهای جداسازی گازها و مایعات، فرایندهای غـشایی و کاتالیـستی گـزارش شـده اسـت. این زئولیت با مقدار زیاد سیلیکا در بـیش از ۵۰ فراینـد بـه عنـوان جـزء اصـلی کاتالیـست اسـتفاده می شود. این زئولیت بعد از زئولیتY، پرکاربردترین زئولیـت کاتالیـستی مـی باشـد. غـشاهای ZSM-5) MFI و سیلیکات) در میان غشاها به دلیل پایداری حرارتی، شیمیایی و مکانیکی بالا، ویژگـی آب گریـزی، عمـر دراز مدت، و ظرفیت جذب سطحی بالا بسیار مورد توجه می باشد. مقالات بسیاری برای سنتز آن هـا بـر روی انـواع پایه های متخلخل، و اثر دما و فشار بر روی سنتز آنها ارئه شده است. این زئولیـت از حلقـه هـای ۵ عضوی تشکیل شده و به یکدیگر متصل می شـوند. ایـن سـاختار کاملا انعطاف پذیر بوده و تقارن دقیق کریستالوگرافی آن به ترکیب، دما، و مولکول های جـذب شـده بـستگی دارد. زئولیت MFI از دو نوع کانال مختلف با روزنه حلقـو ی۱۰ عـضوی تـشکیل شـده اسـت. یـک کانـال مستقیم با دهانه دایره ای با قطر ۰٫۵۴ نانومتر و یک کانال سینوسی بـا دهانـه بیـضوی بـا قطـر ۰۵۱× ۰٫۵۵دارند . این کانال ها بـا نـسبت متغیـر در MFI افزایش مـی یابـد و زئو لیت با نسبت Si/Al از ۵ به بالا قابل تهیه می باشد. با افزایش میزان Al ویژگی آب دوستی سیلیکات (فرم سیلیسی خالص) کاهش یافته و پایـداری حرارتـی بـالایی مشاهده می شود. زئولیـت MFI ظرفیت بالایی در جذب دی اکسیدکربن در مخلوط های مختلف گازی حتی با وجود بخار آب دارد [15-18].

(1-10)-الف:ساختار کانالی زئو لیت MFI ب: ساختار اسکلنی زئولیت MFIنشان دهنده حفرات سینوسی و مستقیم ,تقاطع انها یک نما ازساختار کامل در گوشه پایین سمت چپ دیده می شود[18].

1-5-1-عوامل موثر بر تبلور ساختار MFI
در این قسمت تاثیر غلظت اجزای سازنده مختلف موجود در فرایند در سنتز زئولیتهای ZSM-5 را بررسی می کنیم . عامل های زیر می تواند بر سرعتهای هسته زایی و رشد بلور تاثیر بگذارند:
– مقدار آلومینیم ژل یا نسبت SiO2/Al2O3 آن ؛
– درجه رقت ( نسبت H2O /SiO2 ) :
– خصلت قلیایی محیط (نسبتهای OH/SiO2 / , TPA /SiO2, Na/Si2 )؛
– طبیعت منبع سیلیسی با درجه بسپارش آن .
حال باید دید که این عاملها چگونه در شرایطی که فاز خالص به دست می آید ، سرعت بلوری شدن را تحت تاثیر قرار می دهند.

(1-11)-مکانیسم هسته زایی ZSM-5 را به صورت شماتیک نشان می دهد [18].

1-5-1-1- نسبت SiO2/Al2O3 در ژل
می توان انتظار داشت که غلظت آلومینادر ژل ، سرعت تبلور ZSM-5 از ژل را تغییر دهد. از این رو، Al/(Al +Si) بهتر از نسبت مولی Si/Al2 به عنوان عامل فیزیکی با مفهوم تری می تواند مورد استفاده قرار گیرد . برخی از پژوهشگران تاثیر مقدار آلومینیم در ژل را بر سرعت تبلور ZSM-5، با ثابت نگه داشتن سایر عاملها، بررسی کرده اند. نمودار زیر تاثیر Alموجود در ژل سنتزی برکریستال شدن ZSM-5 را نمایش میدهد. : a برای ژل سنتزی 2O) 1(Na2O) 1(SiO2)18(H2O) 270(TPA)), b: 2O) 1(Na2O) 3(SiO2)5(H2O) 200(TPA))
c: 2O)1(Na2O)0.2(SiO2)7(H2O)250(TPA)).

نمودار1-1 تاثیر Alموجود در ژل سنتزی بر کریستال شدن ZSM-5را نمایش می دهد.
کلیه داده ها نشان داد که سرعت تبلور ZSM-5 وقتی سریع تر می شود که با ثابت نگه داشتن تمام عاملهای دیگر مقدار آلومینیم ژل پایین تر باشد. وضیعت بر خلاف عملکرد هیدروترمال طبیعی یک چنین سیستمهایی است: نسبتهای si/Al بالاتر، سیستمی با گرانروی بالاتر و سرعت واکنش پایین تری می دهند. نمودار 1-1 نشان می دهد که شرکت آلومینیم در نوع ساختار MFI، ماهیتی از هم گسیخته است و هنگامی که سیستم آلومینیم بیشتری داشته باشد مشکل فزونی می گیرد [19و20] .

1-5-1-2-نسبت template/SiO2 در ژل
معلوم شده است که کاتیونهای قادرند با سیلیکات یا گونه های آلومینیم سیلیکات تشکیل کمپلکس دهند و با یونهای Na+ برای جبران بار گونه های سیلیکات و آلومینوسیلیکات رقابت کنند. این کاتیونها می تواند تشکیل واحدهای فرعی معین را پایدار کنند و آنگاه همتاسازی این واحدهای ساختمانی اولیه را از طریق پیوند هیدروژنی فضا ویژه بین یون تمپلت و آنیونهای اکسیژن موجب شوند از این رو، حضور تمپلت می تواند برای تشکیل ساختاری خاص ضروری باشد یا ممکن است جهت دهنده ساختاری باشد. این اثر اینک به عنوان اثر طاق ساز در سنتز زئولیت شناخته شده است[21]. واقعیتهای زیر موید چنین اثری در جریان سنتز زئولیت ZSM-5 هستند :
– سرعت تبلور با افزایش نسبت template /SiO2، دست کم تا مقدارهای معینی افزایش می یابد .
– دیده شده است که افزایش سرعت وقتی مقدار template /SiO2 به حد معینی برسد به حالت سیر شدگی می رسد[22-24].

(1-12)-طرز قرار گرفتن سورفاکتنت TPA و HDA در کانال های مستقیم و سینوسی در زئولیت ZSM_5 Si- 48 Si-ZSM_[18]

1-5-1-3- درجه رقت یا نسبت H2O/SiO2
نسبت H2O /SiO2 در مخلوط سنتزی ZSM-5 تاثیر ناچیزی بر سرعت تبلور دارد [25].
1-5-1-4-نسبت M/SiO2
طبق اظهارات رولمن و والیوسیک [25] ، نسبت M/SiO2 نیز هیچ عملکرد تعیین کننده سرعتی در سنتز ZSM-5 ندارد و ساختار نوع MFI در گستره وسیعی از مقدارهای این نسبت (از 07/0 تا 18/1 ) به دست می آید . لکن شواهد نشان می دهد افزایش کاتیون فلز قلیایی دوم یا فلز قلیایی خاکی و به کارگیری منبع دیگرفلز قلیایی سرعتهای هسته زایی و تبلور را به طور قاطع تحت تاثیر قرار می دهد. در مقابل، نباید فراموش کرد که افزایش قلیا قدرت بازی سیستم را افزایش می دهد و در نتیجه اثرهای پارامترهای مختلف همیشه به آسانی قابل تفکیک نیست. نقشهای کاتیونهای فلز قلیایی در ژل شامل آلومینوسیلیکات چنین پیشنهاد شده است :
– در مقدارهای کم، کاتیونهای فلز قلیایی ممکن است تبلور ZSM-5 را کاتالیز کنند ( با روشی که بیش از این آشکار نشد ) .

– در غلظت ثابت OH-، اولین نتیجه افزایش کاتیونهای عریان فلز قلیایی، که در کره ای ثابت آبپوش می شوند، آن است که درجه اَبَر سیر شدگی افزایش می یابد و هسته زایی سریع تر می شود.

– کاتیونهای فلز قلیایی آبپوش شده با ذرات سُل آلومینو سیلیکات آبگریز بر هم کنش می کنند، در نتیجه، پایداری آنها کاهش می یابد و آنها انباشته می شوند و به صورت ژل رسوب می کنند. که اثر نمک زدایی نامیده می شود. بازده آن به چگالی بار و در نتیجه به ماهیت فلز قلیایی وابسته است.

– کاتیونهای فلز قلیایی بسته به اندازه شان قابلیت طاق سازی یا شکل دهی ساختاری (Na, Li) یا اثر شکست ساختاری (Cs , Rb , K و همچنین NH4 ) را دارند. در واقع، کاتیونهای بزرگ با قدرت کمتری آبپوش می شوند و احتمالاً ساختار آب را با شکستن پیوندهای هیدروژنی از هم می گسلند .

– کاتیونهای فلز قلیایی بسته به پتانسیل الکتروستاتیکی شان (متناسب با 1/r )) قادر خواهند بود با کارایی کمتر یا بیشتری با بارهای نقطه ای بر هم کنش کنند و با یکدیگر و با TPA برای جبران بار آنیونهای آلومینوسیلیکات رقابت کنند [27-28].

1-5-1-5-نسبت OH/Sio2
تاثیر خصلت قلیایی بر سرعت هسته زایی ZSM-5 به دفعات مطالعه شده است. بارر [32] در حالت کلی تاکید می کند که یک افزایش غلظت OH-، درجه ابر سیرشدگی را افزایش می دهد و رشد بلور را تسریع می کند. افزایش غلظت OH- همچنین حلالیت زئولیتها را در مادر آب آنها افزایش می دهد. از این تحلیل ها کلی چنین نتیجه می شود که برای اینکه زئولیتی معین، در دوره زمانی کوتاهی به صورت فاز واحد هسته زایی شود ، غلظت بهینه OH- یا نسبت بهینه OH/SiO2 باید وجود داشته باشد. این نسبت بهینه OH/SiO2 برای سنتز ZSM-5 , برای یک نسبت SiO2/Al2O3 برابر 90، یک نسبت H2O/SiO2 برابر 40، نسبت Na/SiO2 برابر 59/0 و یک نسبت Template/SiO2 برابر 1/0، نسبت بهینه OH/SiO2 برابر 05/0 است . خصلت قلیایی برای نگهداری کانی گونه های هیدروکسی سیلیکات و آلومینات حل شده باید بالا باشد ولی نه آن قدر بالا که از هسته زایی و رشد این گونه ها جلوگیری کند .
1-5-1-6- ماهیت منبع سیلیسی
هم اکنون مستندات پژوهشی وجود دارد که به روشنی نشان می دهد که ماهیت منبع سیلیسی نیز در بین عوامل دیگر بلوری شدن ZSM-5 از ژل متداول وجود دارد. منابع سیلیسی که ذاتاً محتوی مقدارهای بالایی از تکپار سیلیکات، سریع تر از ژلهایی که در آنها سیلیکات در حالت بسپاری بالاتری وجود دارد متبلور می شوند . بنابراین می توان نتیجه گرفت که سرعت انحلال یا وابسپارش سیلیسی که معلوم شده آهسته است در مرحله تعیین کننده سرعت در هسته زایی ZSM-5 دخالت دارد. چون رشد بلور نیز به همین روش تحت تاثیر قرار دارد ، این امر نشان می دهد که سرعت آن نیز با غلظت سیلیکات تکپاری تعیین می شود. بنابراین، لازم به یادآوری است که تغییر منبع سیلسی ( به عنوان مثال ، به کارگیری سُل سیلیسی به جای سدیم سیلیکات ممکن است گرانروی ژل را تغییر دهد. با سدیم سیلیکات، معمولاً ژلهای بسیار سفت به دست می آیند که به منظور رسیدن به تبلور نسبتاً سریع لازم است خیلی رقیق شوند. بنابراین در گرانرویهای یکسان، ژل حاصل از سُل سیلیسی شامل جامدهای بیشتری است و در همان مدت زمان تبلور، بهره بیشتری به دست می آید . در

نسبتهای H2O/SiO2 یکسان، سرعت تبلور ژل با استفاده از سُل به عنوان منبع سیلیسی دو مرتبه سریع تر از هنگامی است که ژل با سدیم سیلیکات ساخته می شود .
1-5-2-تاثیر پارامترهای مختلف بر مورفولوژی زئولیتی
1) هنگامی که یونهای با خاصیت شکست ساختاری به ژل افزوده می شود، اندازه های بلوری درشت تر به دست می آیند، که ریخت آنها از توده های کروی تا بلورهای منشوری تک یا دو قلو تغییر می یابد . این اثر با ماهیت کاتیون به ترتیب زیر افزایش می یابد : Li<Na<K<Rb<Cs<Ba<Sr .
2) غلظتهای بالای تمپلت به طور طبیعی بلورهای ریز می دهد. در حالی که در حضور مقدارهای پایین تمپلت تک بلورهای تمپلت به طور طبیعی بلورهای ریز می دهد. در حالی که در حضور مقدارهای پایین تمپلت تک بلورهای درشت به آسانی به دست می آیند.
3) از بیشتر ژلهای پرسیلیس، بلورهای درشت تر به دست می آیند هنگامی که در یک مخلوط معین، آلومینیم کمپلکس شده باشد باز هم افزایش در اندازه بلور مشاهده می شود.
4) افزایش نمکها (آنیونها با کاتیونها )، مخلوط سنتز را به تشکیل بلورهای غالباً درشت تر هدایت می کند، که ریخت آن با ماهیت یون خارجی تغییر می کند. در حال حاضر، با داده های موجود مشکل می توان استدلال منطقی کرد و نسبت دادن ایجاد ریختی ویژه به خصلت خاص یون امکان پذیر نیست .
5) ماهیت و درجه بسپارش منبع سیلیس، ریخت را تعیین می کند و همان طوری که انتظار می رود، منابع سیلیس تکپار بلورهای ریزتر یا توده های آنها را می دهد، در حالی که از منبع سیلیسی بسپاری بلورهای درشت به دست می آید .
6) نسبت OH/SiO2 ( یا خصلت قلیایی سیستم ) اندازه و درجه انباشتگی را تحت تاثیر قرار می دهد در قدرت بازی بالا، بلورهای ریز اما پخش شده به دست می آید، در حالی که در نسبتهای OH/SiO2 پایین (01/0 ) بلورهای درشت کاملاً مشخص به دست می آیند .
1-5-3- سنتز ZSM-5 در حضور آمینها
آمینهای افزوده شده به یک مخلوط سنتز قلیایی در اختلاف با یونهای آمونیوم نوع چهارم، می تواند اثرهای متعددی داشته باشند :

– مخلوط واکنش را بافر می کنند به طوری که افزایش pH طی سنتز کاهش می یابد [29] .اگر مقدارکافی آمین در فاز بلوری زئولیت جذب شده باشد مواد آلی باقیمانده در ژل یا محلول، موجب افزایش ضعیف pH طی تبلور خواهد شد.
– موجب خالی شدن Na ، محصول نهایی می شوند.
در مخلوط آبی سنتزی، آمین به طور جزئی پروتون دار می شود :
(1-1)
(2-1)
غلظت نهایی آمین (A) در مخلوط واکنش به صورت زیر خواهد بود [25]:
(3-1) |A|=|RNH3+|+|RNH2|
(4-1) |A|=|RNH3+|.(1+ka|H+|-1)
و در نتیجه، pH بسیار پایین تر از سیستم بدون آمین وابسته خواهد بود بنابراین موجب افزایش بهره تبلور خواهد شد.
1-5-4-سنتز زئولیت ZSM-5 در حضور الکلها
اگر الکلها به عنوان طاق دهنده در سنتز ZSM-5 استفاده شوند و اگر قدرت بازی محلول ابر سیر شده با منبع کانی فلز قلیایی فراهم شده باشد، لازم است سنتز زئولیت بر حسب الگوی پرکننده حفره تفسیر شود .
در استفاده از الکل برای سنتز ZSM-5 نکات زیر حائز اهمیت است :
– قدرت بازی لازم برای رسیدن به اَبَر سیر شدگی با بازهای کانی فراهم شود .
– وقتی NH4OH به عنوان باز کانی همراه با الکل مورد استفاده قرار می گیرد ، در نهایت زئولیتی به دست می آید که می تواند بدون حرارت دادن نمونه عاری از هر گونه ترکیب آلی یا باز باشد که برای کاربردهای اسیدی با دمای پایین اهمیت فراوانی دارد .
– با بعضی الکلها (مثلاً پینانوکول ) ، ZSM-5 فاز نیم پایداری است که با قرار گرفتن طولانی در معرض هوا به کنیاییت تبدیل می شود؛ به نظر می رسد مقدارهای زیاد از دیول عملاً مانع تشکیل کنیاییت می شود.

(1-13)-مکانیسم عمومی سنتز زئولیت [30]
1-6-طیف بینی جذب مادون قرمز16
فرکانس تشعشع الکترومغناطیس در ناحیه مادون قرمز (IR) مطابق با فرکانس ارتعاش طبیعی اتم های یک پیوند است و پس از جذب امواج مادون قرمز در یک مولکول، باعث ایجاد یک سری حرکات ارتعاشی در آن می شود که اساس و مبنای طیف سنجی مادون قرمز را تشکیل می دهد. ساده ترین نوع حرکات ارتعاشی در یک مولکول، حرکات خمشی و کششی است. تقریبا تمامی ترکیباتی که پیوند کوالانسی دارند، اعم از آلی یا معدنی، فرکانس های متفاوتی از اشعه الکترومغناطیس را در ناحیه مادون قرمز جذب می کنند. ناحیه مادون قرمز، ناحیه ای از طیف الکترومغناطیس است که طول موجی بلندتر از نور مرئی (۴۰۰ تا ۸۰۰ نانومتر) و کوتاه تر از امواج مایکرو ویو (طول موج بلندتر ازmm۱) دارد. طیف بینی مادون قرمز معمولا در سه ناحیه طیفی بررسی میشود:
1- ناحیه مادون قرمز نزدیک 2 (NIR) :که ازcm-1 4000 – 12500 بوده و در برگیرنده باندهای ارتعاشی ترکیبی و اورتون می باشد.

2- ناحیه مادون قرمز میانی17(RIM): که ازcm-1 400-4000 بوده و شامل باندهای ارتعاشی اصلی است
3- ناحیه مادون قرمز دورcm-1 :(FIR)2 30-400 که در برگیرنده ی باندهای ارتعاشی مربوط به شبکه و برهم کنش است.
این طیف بینی به صورت یک ابزارمهمی برای اندازه گیری روزمره ی اجزای تشکیل دهنده جامدات به نرمی پودر شده، درآمده است. گسترده ترن زمینه استفاده از این فن در اندازه گیری پروتئین، رطوبت، نشاسته، روغن، لیپیدهاو سلولزدر محصولات کشاورزی مانند غلات و دانه های روغنی است.

1-6-1-ناحیه مادون قرمز میانی :
پرکاربردترین محدوده ی طیفی زیر قرمز برای آنالیزهای شیمیایی، ناحیه ی مادون قرمز میانی (MIR) میباشد. این ناحیه محدوده ی فرکانسی را cm-1 400-4000 پوشش می دهد. این ناحیه میتواند به دو زیر ناحیه تقسیم شود:
الف) ناحیه ی فرکانس گروهی 4000-1300 cm-1
ب ( ناحیه ی اثر انگشتی 1300-500 cm -1
در ناحیه ی فرکانس گروهی باندهای جذبی عمدتا به حالتهای ارتعاشی گروههای عاملی نسبت داده میشود. وجود و عدم وجود این باندهای فرکانس گروهی میتواند برای تشخیص ساختار مولکولی مفید باشد. باندهای جذبی در ناحیه ی اثر انگشتی، برای هر ترکیب کاملا منحصر به فرد است اما شلوغ بودن زیاد این ناحیه، تفسیر و بررسی آن را مشکل میساز. ولی مجموعه ی الگوی این ناحیه وقتی با الگوهای مرجع تطبیق داده میشود، برای شناسایی ماده، منحصر به فرد، تکرار پذیر و مفید می باشد.

(1-14)-شمای از یک طیف ریز قرمز میانی

1-6-2- طیف سنجی مادون قرمز تبدیل فوریه :
درسیستم دستگاهیFTIR با شکافتن تابش منبع به دو باریکه، طول مسیر آن متناوباً تغییر کرده و الگوهای تداخل متفاوت را سبب میگردد. در واقع، طیف سنجی تبدیل فوریه بر اساس تداخل دو پرتو با استفاده از یک تداخل سنج پایه گذاری شده است و در آن یک سیگنال وابسته به تغییر طول مسیر بین دو پرتو حاصل میشود. دو حوزه ی مسافت و سیگنال توسط روشهای ریاضی تبدیل فوریه به یکدیگر تبدیل میشوند.تابش از منبع به تداخل سنج18 وارد می شود و قبل از اینکه به آشکارساز 2 برسد وارد نمونه میشود. پس از تقویت سیگنال، که در آن ترکیباتی با فرکانس بالا توسط یک فیلتر حذف میشوند، داده ها توسط یک مبدل آنالوگ به دیجیتال، به فرم دیجیتال تبدیل میشوند و به کامپیوتر برای تبدیل فوریه، انتقال می یابند.[31] مهمترین مزایای طیف سنجی تبدیل فوریه سرعت و حساسیت بالاتر (مزیت فلگت3),افزایش میزان عملکرد نوری دستگاه (مزیت جکوئینوت4)، بالا رفتن قدرت تفکیک( مزیت کانز5) , طراحی ساده تر، زمان اسکن کمتر و عدم تاثیر نور هرز و تابش حاصل از نشر نمونه میباشد.

(1-15)-تصویر طیف سنج تبدیل فوریه

1-6-3-نمونه گذاری در طیف سنجی مادون قرمز:
طیف سنجی زیر قرمز یکی از تکنیک هایی است که برای شناسایی تمامی حالات (ماده جامد، مایع وگاز)کاربرد دارد. تکنیک های نمونه گذاری به هدف آنالیز )تشخیص کیفی یا اندازه گیری کمی آنالیت) سایز نمونه و ترکیب نمونه بستگی دارد. به طور عمده میتوان روشهای نمونه گذاری در طیف سنجی زیر قرمز را به دو دسته ی عبوری (جذبی)و انعکاسی تقسیم بندی کرد، که هریک از این روشها نیز خود به چندین شاخه تفکیک می شوند.از تکنیکهای عبوری نمونه گذاری میتوان به روش قرص KBr, روش mull روشهای مخصوص مایعات و محلول ها و سل های گازی اشاره کرد. نمونه های ضخیم، جامدات کدر، الیاف، پوشش ها، پلیمرها و نمونه های محلول آبی را نمیتوان با استفاده از تکنیک های عبوری آنالیز کرد، در این زمان از تکنیک های انعکاسی استفاده میشود. به طور کلی اندازه گیریهای انعکاسی به سه دسته تقسیم می شوند.

– انعکاس خارجی: این تکنیک انعکاسی شامل دو نوع بازتابش است : بازتابش مسطح یا آینه ای19 و انعکاس- جذب2

– انعکاس درونی: که نوعی از آن بازتابش کلی کاهش یافته 3 است.

– بازتابش انعکاس-پخش4

(1-16)-الف(بازتابش آینه ای، نوعی از انعکاس خارجی ب( بازتابش انعکاس-پخش ج( بازتابش کلی کاه شیافته، نوعی از بازتابش درونی
1-7-طیف سنجی انعکاس-پخش:
زمانی که پرتو تابشی به نمونه برخورد می نماید، مقداری از پرتو انعکاس آینه ای می دهد، مقداری از پرتوی تابشی توسط نمونه جذب شده ومقدار باقی مانده ی پرتو تابشی از نمونه عبور می نماید و فقط قسمتی از پرتو تابشی از نمونه به تمام جهات باز تابیده و پخش میشود که این انرژی، توسط لوازم جانبی جمع شده و به سمت آشکارساز هدایت میشود. تکنیک طیف سنجی تبدیل فوریه زیر قرمز انعکاس پخشی 20، برای یک سطح غیر آینه ای و کدر و سطوح رنگی و پودرها که پرتو برخوردی در تمام جهات انعکاس مییابد و سطح ناهموار دارند، هم در ناحیه ی طیفی RIN وهم MIRمناسب میباشد. در این روش پرتوی تابیده شده به نمونه ی پودری در تمام جهات بازتابیده و پخش میشود. طیف سنجی انعکاس- پخش با

موفقیت برای تحلیل کمی نمونه های پودری بکارمی رود. در حالت ایده آل پرتو به اندازه ی mμ100 به درون نمونه نفوذ میکند و نور بازتابش شده درزوایای زیادی از نمونه پراکنده می شود، سپس این پرتوهای پراکنده شده با استفاده از آینه های بزرگ جمع میشوند. در این طیف سنجی باندهای کوچکتر بطور قابل ملاحظه ای نسبت به باندهای قویتر رشد می کنند. در اغلب موارد نمونه با یک ماتریکس غیر جذبی مانند پتاسیم برماید مخلوط میشود. نسبت نمونه به ماتریکس 1 تا 5 در صد وزنی می باشد. این رقیق سازی نفوذ عمیق پرتوی برخوردی را به داخل نمونه تضمین مینماید، که موجب افزایش سهم پراکنش در طیف میشود و سهم انعکاس آینه ای را به حداقل مقدار می رساند. انعکاس آینه ای ترکیب شده در طیف انعکاس- پخش در برخی موارد موجب تغییرات در شکل باند و شدت نسبی آنها میگردد.[ 33-35].

(1-17)-مکانیسم ایجاد بازتابش انعکاس-پخش از سطوح پودری و ناهموار
1-8-طیف سنجی رزونانس مغناطیسی هسته :
رزونانس مغناطیسی هسته ای (NMR)یک روش طیف سنجی است که برای شیمیدانان آلی از اهمیتی والا نسبت به طیف سنجی مادون قرمز برخوردار است . بسیاری از هسته ها را می توان با فنون NMR مطالعه کرد ، ولی هیدروژن و کربن بطور معمول مورد استفاده قرار می گیرند . بسیاری از هسته های اتمها دارای خصلتی هستند که اسپین خوانده می شود : هسته ها به گونه ای رفتار می کنند که گویی در حال چرخش هستند . در

حقیقت اتمهایی که عدد جرمی فرد ، عدد اتمی فرد یا هر دو را دارند ، دارای گشتاور زاویه اسپین کوانتایی و گشتاور مغناطیسی هستند .شاخص ترین هسته هایی که دارای اسپین هستند ، عبارتند :

در یک میدان مغناطیسی ، حالات اسپین انرژی یکسانی را نخواهند داشت ، زیرا یک هسته ذره ای باردار بوده و هر ذره باردار متحرک خود تولید میدان مغناطیسی می کند . بنابراین ، یک هسته دارای گشتاور مغناطیسی ( μ ) است که به وسیله بار و اسپین آن تولید می شود . یک هسته هیدروژن می تواند اسپینی موافق جهت عقربه های ساعت (2/1+)یا مخالف جهت عقربه های ساعت (2/1-)داشته باشد و در این دو حالت ̦گشتاورهای مغناطیسی خود را یا در جهت میدان و یا در خلاف جهت آن قرار می دهند.

(1-18) حالت های اسپین انرژی
هنگامی که یک میدان مغناطیسی خارجی به کار برده شود ، حالت اسپین دژنره به دو حالت ، با ترازهای انرژی نابرابر شکافته می شوند.

اهمیت رزونانس مغناطیسی هسته ای از آن جا آشکار می شود که در یک مولکول ، تمام پروتون ها در یک
فرکانس رزونانس نمی کنند . این بدین دلیل است که پروتون های مولکول توسط الکترونها احاطه شده و محیط الکترونی هر یک از پروتونها بطور جزیی با دیگر پروتونها فرق می کند . به عبارت دیگر ، پروتونها توسط الکترونهایی که آنها را احاطه کرده اند پوشیده یا محافظت می شوند . در یک میدان معناطیسی ، الکترونهای ظرفیتی پروتونها می چرخند . این چرخش که جریان دیامغناطیس محلی خوانده می شود ، تولید میدان مغناطیسی متضادی می کند که در جهت مخالف میدان مغناطیسی اعمال شده عمل می نماید . این اثر که مانع دیامغناطیسی یا آنیزوتروپی دیا مغناطیسی نامیده میشود. در یک اتم ، جریان مغناطیسی محلی تولید یک میدان مغناطیسی ثانویه می نماید که دارای جهتی مخالف میدان مغناطیسی اعمال شده است . در نتیجه آنیزوتروپی دیا مغناطیس ، پروتون در مولکول بسته به دانسیته الکترونی اطراف آن از جانب میدان مغناطیسی اعمال شده محافظت می شود . هر قدر دانسیته الکترونی اطراف یک هسته بیشتر باشد میدان مغناطیسی تولید شده توسط الکترونها ، که در جهت عکس میدان اعمال شده است ، بیشتر خواهد بود.

(1-19) شمای از یک میدان مغناطیسی ثانویه در یک اتم

1-8-1- طیف سنج رزونانس مغناطیسی هسته ای تبدیل فوریه تپشی
این روش استفاده از یک انفجار انرژی قدرتمند ولی کوتاه به نام تپ است که کلیه هسته های مغناطیسی در مولکول را بطور همزمان تهییج می کند . وقتی تپ متوقف شد ، در آن صورت هسته های تهییج شده شروع به از دست دادن انرژی تهییج خود می کنند و به حالت اسپینی اولیه خود باز می گردند . آنگاه که هسته برانگیخته شده آسایش می کند ، شروع به تابش اشعه الکترومغناطیس می نماید . چون مولکول حاوی هسته های مختلف بسیار است لذا ، فرکانسهای گوناگون بسیاری از اشعه الکترومغناطیسی بطور همزمان تابش خواهند نمود . این تابش را زوال القای آزاد (FID)21 می نامند .
1-8-2-قاعده (N+1) شکاف اسپین – اسپین
طبق این قاعده هر نوع ، پروتون تعداد پروتونهای معادل (n) بر روی اتم (اتمهای ) کربن مجاور آن کربنی که خود به آن متصل است را احساس کرده و قله رزونانس آن به (n+1) جزء تقسیم می شود.

(1-20)-نمونه ی از شکاف اسپین -اسپین دی کلرو اتان

1-8-2-1-هسته کربن -13
مطالعه هسته های کربن از طریق طیف سنجی رزونانس مغناطیسی هسته ای (NMR) ، تکنیک مهمی برای تعیین ساختمانهای مولکولهای آلی است . استفاده از آن به همراه NMR پروتون و نیز طیف سنجی مادون قرمز ، شیمیدانان آلی را قادر می سازد تا به تعیین ساختمان کامل یک ترکیب مجهول بپردازند ، بدون اینکه دستهای خود را در آزمایشگاه آلوده کنند . دستگاههای جدید NMR تبدیل فوریه (FT-NMR) امکان بدست آوردن طیفهای کربن را آسان می کند.
1-8-2-2-تغییرات مکان شیمیایی کربن -13
پارامتر مهم در طیفهای کربن -13 ، تغییر مکان شیمیایی است . به دلیل محدوده بسیار وسیع مقادیر تغییر مکان شیمیایی ، تقریبا هر اتم کربن نامعادل در یک مولکول آلی ، یک قله با تغییر مکان شیمیایی متفاوت می دهد .
جدول ارتباطی به چهار بخش تقسیم شده است . اتمهای کربن اشباع شده در بالاترین میدان و نزدیک به TMS22ظاهر می شوند ( 8- 60ppm) . قسمت دوم تاثیر اتمهای الکترونگاتیو را نشان می دهد ( 40-70ppm) . سومین بخش شامل اتمهای کربن آلکن و حلقه آروماتیک است . ( 100-150ppm ). چهارمین بخش جدول حاوی کربنهای کربونیل است که در پایین ترین میدان ظاهر می شوند ( 155-200ppm) .

(1-21)-تغییرات مکان شیمیایی کربن

1-9-مقدمه ای بر کمومتریکس23
توسعه ی کمومتریکس مربوط به استفاده ی کامپیوترها در شیمی می باشد . واژه ی کمومتریکس اولین بار در سال 1972 به وسیله ی وُلد2 و کوالسکی3 معرفی شد . اولین انجمن بین المللی کمومتریکس4 (ICS) در سال 1974 تشکیل شد و به دنبال آن ها یک سری سمینارها و کنفرانس هایی تحت عناوین مختلف مانند کاربردهای کامپیوتر در شیمی تجزیه ، شیمی تجزیه بر پایه ی کامپیوتر و یا کمومتریکس در شیمی تجزیه برگزار گردید . برخی از مجلات بخشی از مقالات خود را کمومتریکس اختصاص دادند . سپس مجلات کمومتریکس شروع به کار کردند . روش های کمومتریکس ، در هر مرحله ای از انالیز ، از طراحی یک آزمایش گرفته تا زمانی که داده ها رو به زوال می روند ( بسته به نوع سیستم ) قابل کاربرد است . اولین تعریفی که به صورت جامع از کمومتریکس بیان شد توسط کوالسکی و فرانک5 ارائه گردید . بر این اساس کمومتریکس را شاخه ای از علم شیمی معرفی کردند که در ان با بکارگیری آمار و ریاضی و کامپیوتر می توان روش هایی را ارائه داد که از طریق آن بتوان حداکثر اطلاعات مفید را از یک سیستم شیمیایی استخراج نمود.
1-9-1-طراحی ازمایش6:
روش تعریف و بررسی تمامی شرایط ممکن در یک آزمایش شامل چند فاکتور"طراحی آزمایش ها نامیده می شود. این روش در بعضی نشریات طراحی فاکتوریلی نامیده می شود. در طراحی فاکتوریلی تعداد کامل آزمایشات ممکن N عبارتست از: N=Lm که در آن L تعداد سطوح انتخاب شده در هر فاکتور و m تعداد فاکتورهای تحت بررسی است. در اینگونه آزمایشات دقت آزمایش با استفاده از تحلیل آماری ( ANOVA ) تعیین می شود.طراحی آزمایشها یکی از قوی ترین فنون بهبود کیفیت و افزایش بهره وری است. در این شیوه از طریق انجام برخی آزمایش ها ، آگاهانه تغییراتی در فرایند یا سیستم اعمال می شود تا تاثیر آنها در ویژگی های عملکردی یا پاسخ فرایند یا سیستم به آنها، مورد بررسی قرار گیرد.طراحی آزمایش ها ، دستکاری سیستماتیک تعدادی از متغیرهاست که در آن، تاثیر این دستکاری ها ارزیابی می گردند و از

روی آنها نتیجه گیری شده، نتایج بدست آمده پیاده سازی می شوند.همچنین DOE یکی از ابزارهای بهبود کیفیت در تولید ناب Lean Production است. دانشمندان آزمایشات زیادی را انجام می دهند تا بتوانند به نتایج دلخواه خود برسند که این آزمایشات مستلزم هزینه و زمان بسیاری است در واقع DOE نوعی روش انجام آزمایش است که به صورت کاملا سیستماتیک عمل می کند و با صرف کمترین منابع ،هزینه و زمان ،بیشترین اطلاعات را از نتایج آزمایش استخراج می کند.

1-9-1-1-تعریف فرایند مورد مطالعه
طراحی آزمایش ها ابزاری مناسب برای درک صحیح فرآیندها و عوامل موثر بر آنها چندین را وجود دارد که یک شیمیدان بتواند با دانستن پایه طراحی ازمایش های شیمیایی کارایی بهتری داشته باشد این مسیر شامل ،غربال کردن ،بهینه سازی کردن ،کاهش زمان بری و مدل سازی کمی است.
1-9-1-2-غربال کردن 24
در این مرحله باید بررسی کرد که کدامیک از فاکتور ها برای موفقیت فرایند از اهمیت بیشتر ی برخوردار است کدام فاکتور ها را می توان حذف کرد و کدامیک باید با جزئیات مطالعه شوند برای چنین بررسی هایی می توان از مسیر های مانند طراحی فاکتور ها 2و طراحی پلاکت بورمن 3استفاده نمودد.
1-9-1-3-انواعی از روش های طراحی فاکتورها:
طرح فاکتوریل کامل4
در این طرح ها، هر سطح از هر عامل با تمام سطوح عوامل دیگر در اجرا ظاهر می شود.

طرح فاکتوریل دو سطحی1
طرح فاکتوریل با سطوح مرکب2
در این طرح ها، عوامل دارای سطوح متفاوتی هستند.
طرح فاکتوریل جزیی3
1-9-1-4-بهینه سازی 4
بهینه سازی یکی از پرکاربردترین روش های طراحی آزمایش در شیمی است .مسیر هایی مانند طراحی مخلوط5و طراحی ترکیب مرکزی 6 می تواند برای بهینه سازی مورد استفاده قرار گیرد .
1-9-1-5- کاهش زمان بری 7
درصنعت پرکابردترین شاخه ی طرحی آزمایش کاهش زمان بری می باشد در برخی مواد میان ساختار مواد و خواص ان ها یک ارتباط کمی وجود دارد برای مثال با بررسی داده ی ساختاری (مانند طول پیوند ،قطبیت ،خواص فضایی ،گروه های عاملی ،واکنش پذیری و…)چند مولکول محدود و یافتن یک ارتباط کمی بین این داده ها و خواص مشاهده شده در ان می توان این ارتباط را به دسته ی بزرگی از مولکول ها تعمیم داد و از این رو کاهش چشمگیری در زمان بری انجام واکنش ها با دسته گسترده ای از مولکول ها ایجاد نمود برای چنین بررسی هایی از مسیرهای مانند تاگوچی25و طراحی پلاکت بورمن می توان بهره برد .

1-9-1-6-مدل سازی کمی26
در طراحی آزمایش، اغلب آزمون ها، از کالیبراسیون خطی ساده در شیمی تجزیه گرفته تا پروسه های فیزیکی پیچیده ،نیازمند مدل سازی ریاضی هستند برای مدل سازی ریاضی روش های مختلف طراحی ترکیب مرکزی و همچنین طراحی کالیبراسیون 2 می توانند مفید واقع شوند .
1-9-1-7-روش سطح پاسخ 3
این روش شامل گروهی از تکنیک های ریاضی و آماری است که بین تابع پاسخ و یک تعداد از متغیرهای کنترل شده رابطه برقرار می کند طراحی های سطح پاسخ برای بدست اوردن اطلاعات دقیق در مورد اثرات فاکتور شامل بزرگی و جهت ان ها استفاده می شوند تعداد فاکتورها نوعا بین 2یا 6 می باشدکه طراحی 3سطحی دارند و به ما اجازه می دهند اثرات خطی ،غیر خطی و برهمکنش دو فاکتور مورد مطالعه را تخمین بزنیم. این طراحی پیش بینی دقیقی از پاسخ در ناحیه ازمایش ها فراهم می کند و در تشخیص شرایط بهینه مفید می باشد اولین مرحله در استفاده از این روش اندازه گیری رابطه ریاضی بین متغیر پاسخ و متغیرهای مستقل می باشد که با رابطه زیر نشان داده می شود .
Y=f(x) β+ε
x : متغیرها
F(x): تابع پاسخ که کمی بوده و تمام محدوده ی ازمایشات را می پوشاند و شامل برهمکنش ها ی احتمالی می باشد
β : بردار ضریب ناشناخته مربوط به پارامترها

ε: خطای تصادفی آزمایش که انتظار می رود میانگین صفر داشته باشد
مدل های ریاضی می توانند برای محاسبه یک یا همه فاکتورها و اثرات آن ها در گستره آزمایش استفاده شوند. مدل های رگرسیون درجه 1و2 می توانند برای آنالیز پاسخ به عنوان تابعی از متغیرهای مستقل استفاده شوند اگر رابطه پیچیده ای بین متغیر پاسخ و متغیرهای مستقل وجود داشته باشد مدل های درجه 1 قادر نیستند به خوبی پاسخ را پیش بینی کنند اما روابط درجه 2از نظر ریاضی پیچیده تر بوده و در یک ناحیه نسبتا کوچک بسیار قابل انعطاف می باشد و می توانند به گستره متفاوتی از اشکال توابع بپردازند یک معادله درجه بالاتر به صورت زیر نشان داده شده است.
Y= β0 + β1 X1+β2 X2+….+β k X k +β11X21 +….+β k k X2k + β12X1X2 +β13X1 X3+…. + βk-1, X k-1Xk+ ε
Yپاسخ است و β0 ثابت معادله است و β1 و β2ضریب فاکتور های اصلی X1 و X2 وβ12 و β13ضریب برهمکنش های دوتایی است. X12 درجه دوم X1 است.ε خطای تصادفی می باشد.
اهداف مدل ریاضی فراهم شده با پاسخ سطح عبارتنداز:
– تعیین ویژگی آماری تمام فاکتورها که سطح آن ها با X1,X2,…,Xk نشان داده می شود.
– تعیین یک رابطه بین y و متغیرها که می تواند برای پیش بینی مقادیر پاسخ برای یک سری از متغیرها استفاده می شود
– تعیین بهینه ترین مجموعه متغیر ها که منجر به پاسخ بیشترین (یا کمترین) در یک محدوده موردنظر بوسیله بهینه سازی همزمان متغیرهای پاسخ انتخاب شده می شود و اطلاعاتی در مورد جهت و بزرگی تاثیر فاکتورها و اثرات ترکیب آن ها بر روی خصوصیات فرایند می دهد.

1-9-2-پردازش داده های چند متغیره
1-9-2-1- آنالیز فاکتوری 27
آنالیز فاکتوری یکی از کارآمدترین روش های کمومتریکس است که از طریق آن می توان بردارهایی را که فاقد مفاهیم فیزیکی یا شیمیایی بوده و برای ما نامفهوم می باشند را به مفاهیم ی چون غلظت یا طیف تبدیل نمود .
1-9-2-2- آنالیز فاکتوری تکاملی2 (EFA)
هنگامی که پارامتری با یک فرآیند منظم و منطقی تغییر می کند ، دارای فرآیند تکاملی است . تیتراسیون pH متری اسید – باز که توسط روش های اسپکتروفتومتری اندازه گیری می شود مثال خوبی از فرآیندهای تکاملی است . مثلاً در تیتراسیون اسید دو عاملی H2A ، با افزایش pH گونه های HA- , A2- ظاهر می شوند ، یعنی پارامتر دارای تغییرات منظم pH می باشد . EFA از روش های آنالیز فاکتوری و یک ابزار مفید شیمی سنجی برای کنترل فرآیندهای شیمیایی است که توسط میدر3 و همکارانش ارائه شده است. در این روش آنالیز مرتبه به عنوان تابعی از پارامتر با تغییرات منظم (pH ، زمان و ….) صورت می گیرد . این روش به ترتیب از بالا به پایین ماتریس داده (EFA به سمت جلو ) و از پایین به بالا ( EFA به سمت عقب ) برای بررسی ظهور و زوال گونه ها در فرایند بکار می روند . نمودارهای به سمت جلو و عقب EFA با رسم مقادیر ویژه (یا لگاریتم مقادیر ویژه ) بر حسب تابعی از متغیر تکاملی به دست آید . بدین ترتیب با آنالیز متوالی داده های ماتریس می توان ظهور و زوال گونه ها را در فرآیند تکاملی تشخیص داده و تخمینی از پروفایل های غلظتی گونه ها به دست آورد . در آنالیز فاکتوری تکاملی اگر سیستم مورد مطالعه دارای نقصان مرتبه باشد از آنالیز فاکتوری تکاملی برای جبران نقص مرتبه5 (EFARD) استفاده می شود . یک ماتریس زمانی دارای نقص – مرتبه است که تعداد سهم های معنی دار برای واریانس داده ها ، که به وسیله ی SVD 6یا تکنیک های آنالیز فاکتوری مرتبط دیگری تخمین زده می شوند ، کمتر از تعداد واقعی اجزای شیمیایی موجود در سیستم باشند .
یک چنین حالتی غالباً اتفاق می افتد ، برای مثال ، در شروع یک واکنش شیمیایی یا یک فرآیند شیمیایی که بیش از یک گونه حضور دارد ، به جای تعیین تمام اجزای موجود در شروع واکنش ، تنها یکی از آن ها به

طور ریاضی مشتق شده و بقیه ترکیب خطی از آن باشند . تفکیک کامل چنین ماتریس نقص – مرتبه ای به طور کامل انجام نمی شود .
1-9-2-3-روش های آنالیز نرم28
در این روش ها نیازی به داشتن اطلاعاتی درباره ی مدل شیمیایی سیستم نبوده و نیازی نیست که مدل سیستم در این روش ها شناخته شده باشد . حُسن این روش ها در این است که می توان حضور گونه هایی که در فرآیند مورد نظر شرکت ندارند ولی در سیستم مورد بررسی سیگنال دارند را شناسایی و پروفایل طیفی و غلظتی آنها را مدل نمود . همچنین خطای ناشی از فرض مدل غلط برای سیستم در این روش ها وجود ندارد و عیب این روش ها این است که معمولاً همراه با ابهامات شدتی یا چرخشی می باشند .
1-9-2-4-تفکیک منحنی چند متغیره – حداقل مربعات متناوب (MCR-ALS) 2
این روش اولین بار در سال 1993 توسط تالر3 و همکارانش ارائه شد. این روش جزو روش های آنالیز نرم می باشد که در آن فرآیندهای شیمیایی بدون نیاز به اطلاعاتی درباره ی مدل شیمیایی سیستم توصیف می شوند . این تکنیک از جمله تکنیک های مدل نرم است که بدون نیاز به اطلاعات زیاد از سیستم قادر است پروفایل های غلظتی و طیفی مورد نظر را از ماتریس داده ها استخراج نماید . با استفاده از روش نرم جهت آنالیز داده ها ، ماتریس داده به صورت حاصلضرب دو ماتریس طیف ST و غلظت C تبدیل می شود . E ماتریس باقیمانده هاست که مدل نتوانسته آنها را شناسایی کند و باید آن ها را جزو خطاهای آزمایشی به حساب آورد:
(1-5) Dm×n = C(m×r)ST(r×n)+E(m×n)
روش های زیادی برای تفکیک ماتریس D به ماتریس غلظت و طیف خالص اجزا وجود دارد که SVD یکی از این تکنیک هاست . اما همانطور که گفته شد تفکیک ماتریس داده ها با ابهامات شدتی و چرخشی همراه

است که باعث می شوند تعداد زیادی جفت ماتریس S*,C* از تفکیک ماتریس داده ی D بوجود آیند که S,C مد نظر نیستند . لذا باید از این تعداد زیاد زوج های s*,C* ، بتوان S,C واقعی را جدا کرد .
ابهام چرخشی ، از چرخش ماتریس های S,C توسط تبدیل T ایجاد می شود که همان ترکیب خطی ماتریس های S,C است :
(1-6) D(m×n)=C(m×r)T(r×r)-1ST(r×n)=C*S*T
(1-7) C*=CT
(1-8) S*T=T-1ST
این ابهام سبب ایجاد بردارهایی با شکل های متفاوت از حالت های مورد انتظار می شود ، لذا تشخیص این ابهام آسانتر است .
ابهام شدتی ، این ابهام در اثر ضرب یک اسکالر در ماتریس های S,C بوجود می آید . در نتیجه ی این ابهام ممکن است بردارهایی با شکل هایی دقیقاً یکسان ایجاد شوند بدون اینکه بردارهای واقعی باشند ، لذا تشخیص این ابهام به ظرافت بیشتری نیاز دارد .
(1-9)
(1-10)
(1-11) S*T = kST
1-9-2-5- الگوریتم اجرای تکنیک MCR-ALS
1) تشخیص تعداد گونه های موجود در ماتریس داده و بازسازی داده ها با استفاده از تعداد فاکتورهای معنی دار در سیستم .
(1-12)

2) محاسبه ی تخمین اولیه ، که می تواند غلظت یا طیف باشد .
3) محاسبه ی ماتریس طیف ( با فرض تخمین اولیه غلظتی ) و اعمال محدودیت بر روی آن.
(1-13)
4) محاسبه ی ماتریس غلظت و اعمال محدودیت بر روی آن
(1-14)
5) بازسازی ماتریس داده ی () با ضرب کردن ماتریس طیف و غلظت به دست آمده به ترتیب در مرحله ی 3 و 4
(1-15) =CS
بازگشت به مرحله ی 3 و تکرار مراحل بعدی تا زمانی که در طی فرآیند تکرار ، سیستم به همگرایی برسد . در هر تکرار ، مربع مجموع اختلاف بین قبلی و جدید به عنوان میزان همگرایی عدم برازش29 سیستم به این صورت محاسبه می شود :
(1-16)
در تکراری که lof 1به یک حداقل برسد و یا اینکه از مقدار مشخصی که قبلاً به عنوان عدم برازش مطلوب سیستم تعریف شده است کوچکتر باشد ، تکرار فرآیند متوقف شده و سیستم به همگرایی رسیده و پروفایل های طیفی و غلظتی به دست می آیند .

فهرست مراجع و ماخذ :

[1]-GQ. Lu, X. S. Zhao, (2004),"Nanoporous materials: Science and Engineering", UK: Imperial College Press.
[2]-Sebastian Polarz, B. Smarsly, (2002) "Nanoporous materials", Journal of Nanoscience and Nanotechnology 581-612.
3- علی مرسلی (1389) نانو شیمی ابر مولکول ها،انتشارات دانشگاه تربیت مدرس
[4] M. Zrinyi and Z. D. Horvolgyi, MK Egyesülete,(2004). From Colloids to Nanotechnology,Springer.

[5] C. Leiggener, A. Currao, et al. (2008). Zeolite A and ZK-4. Material Synthesis: A
Practical Guide. Ulrich Schubert, Nicola Husing and Richard Laine, Springer
Wien NewYork.

[6] S. Manafi and S. Joughehdoust (2008). Production of Zeolite Using Different
Methods. Iran International Zeolite Conference. Amir Kabir University of Tech-
Tehran-Iran
.
[7] C. S. Cundy and P. A. Cox, (2005). "The Hydrothermal Synthesis of Zeolites:
Precursors, Intermediates and Reaction Mechanism: A Review." Microporous
And Mesoporous Materials 82: 1-78.
[8] D. R. Corbin, A. J. Sacco, et al. (2006). Process for the Production of Nano-Sized
Zeolite A. USA.

[9] S. A. Binti Ibrahim (2007). Synthesis and Characterization of Zeolites From
Sodium Aluminosilicate Solution. School of Material and Mineral Resources
Engineering
[10] L. Tosheva and V. P. Valtchev (2005). "Nanozeolites: Synthesis, Crystallization
Mechanism, and Applications." Chem. Mater 17: 2494-2513.
[11] N. Esmaeili, H. Kazemian, Bastani, Dariush. (2011). "Synthesis of nano particles of LTA zeolite by means of microemulsion technique: A mini review: 1021-9986.

[12] Grieten. R.V, Sotelo. J.L, Menendez. J.M, Melero. J.A, (2000) "Anomalous crystallization mechanism in the synthesis of nano crystalline ZSM-7", Microporous and Mesoporous materials, 39, 135-147
[13] M, Thomas, B. (2001,)"Nanosized zeolite filmes for vapor-sensing applications", Microporous and Mesoporous materials, 50, 159-166
[14] Junfeng Bai, Alexander V. Virovets, Manfred Scheer, (2005) "Synthesis of inorganic material", Vol. 300 no. 5620 pp. 781-783
[15] X. Zhang, D. Liu, D. Xu, S. Asahina, K. A. Cychosz, K. V. Agrawal, Y. A Wahedi, A. Bhan, S. A. Hashimi, O. Terasaki, M. Thommes, M. Tsapatsis,( 2012) "Synthesis of self-pillared zeolite nanosheets by repetitive branching" Science 2012, 336, 1684 -1687;
[16] M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature,( 2009)," Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts" 461, 246- 260
[17] Sandra L. Burkett and Mark E. Davis, Received December 5, (1994), Revised Manuscript Received March 13, (1994)," Mechanisms of structure direction in the synthesis of pure-silica zeolites. 1. Synthesis of TPA/Si-ZSM-5" 920-928
[18] By Ruren Xu, Wenqin Pang, Jihong Yu, Qisheng Huo, Jiesheng Chen,(2007)," Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure".

[19] D.M.Bibby , N.B . Milestone and L.P Aldridge , (1980)," NH4+-tetraalkyl ammonium systems in the synthesis of zeolites" 30-31.

[20] N.Y.Chen , J.N. Miale and W.J.Reagan ,(1978)," Preparation of zeolites" 41-47
[21] Jo˝rg Ka˝rger, Harry Pfeifer, Ju˝rgen Caro, Martin Bu˝low, Ju˝rgen Richter-Mendau, Barbara Fahlke, Lovat V.C. Rees,(1986)," Comparison of molecular transport in ZSM-5 crystals of different habit"187-198.

[22]Gabelica , N . Blom and E.G. Derouane , (1983)," Synthesis and characterization of zsm-5 type zeolites: III. A critical evaluation of the role of alkali and ammonium cations" 227-248.
[23] Eric G. Derouanea, 1, Serge Determmeriea, Zelimir Gabelica, Niels Blomb(1981)," Synthesis and characterization of ZSM-5 type zeolites I. physico-chemical properties of precursors and intermediates "201-224.

[24]D.M.Bibby, N.B. Milestone and L.P Aldridge, (1980)," Preliminary studies on the synthesis of alkaline-free large crystals of ZSM-5" 154-158.

[25] l.D.Rallmann and E.W,(1995)," Bromides in zeolite synthesis / zeolites in bromide synthesis and conversion " 202-216.

[26] Rosario Aiello1, Fortunato Crea1, Alfonso Nastro1, Boris Subotić2, , Flaviano Testa1,(1991)," Influence of cations on the physicochemical and structural properties of aluminosilicate gel precursors. Part 1. Chemical and thermal properties"767-775.

[27]D.M.Bibby,N.B.Milestone and L.P Aldridge,Nature(2001)," Coke formation in zeolite ZSM-5"493-502.

[28] Nilam L. Chauhan1, Jagannath Das2,*, Raksh V. Jasra2, Z. V. P. Murthy1 and Parimal A. Parikh,(2012)," Synthesis of zeolite ZSM-5: Effect of emulsifiers"746-753.

[29] Barrie M. Lowe, Douglas M. Sinclair,(1990) ," Direct measurements of the crystal growth rate and nucleation behaviour of silicalite, a zeolitic silica polymorph" 189-202.
[30] Moussa Zaaroura, Biao Donga, Izabela Naydenovab, Richard Retouxc, Svetlana Mintova, (2014)," Progress in zeolite synthesis promotes advanced applications"11-21.
[31] D. A. Skoog, F. J. Holler, et al. (1998). Principles of Instrumental Analysis,
Nashre Daneshgahi

[32] T Nicolet, N Thermo – Therma Nicolet Corporation, (2001) "Introduction to Fourier Transform Infrared Spectrometry. Thermo Nicolet Corporation Catalog".

[33] D. A. Skoog, F. J. Holler, et al. (2001)," Application of a Teflon(tm) dynamic flux chamber for quantifying soil mercury flux: tests and results over background soil"873-882.
[34] T. Armaroli, T. Bécue, et al. (2004). "Diffuse reflection infrared spectroscopy
(DRIFTS): Application to the in situ analysis of catalysts." Oil & Gas Science
And Technology "215-237.

[35] G. Li (2005). FT-IR Studies Of Zeolite Materials: Characterization And
Environmental Applications. Chemistry Department, University of Iowa. Ph.D
Thesis.

[36]Jian Liu, Chenxi Zhang, Zhenhao Shen, Weiming Hua, Yi Tang, Wei Shen, Yinghong Yue *, Hualong Xu*.Catalysis Communications,(2009)," Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst" 1506-1509.

[37] S. M. Auerbach, K. A. Carrado, "handbook of zeolites sience and technology", INC, 9990, chap 1

1-Dwarf
2-The International Technology Research Instiute
1-Permeability

1–Ion Exchanger
2- Separator
3- Membrane
4- Porous
5- Filteration
6- Hexagonal
7- Microporou
8- Mesoporous3
Macroporous 9-

1- Nanoporous
2- Passing pores
3- Dead end pores

1- closed pores
2- inter-connected pores
1- Sol gel
1-Wet chemistry
1-Hydrotermal
2-Single-Crystalline Quartz
3-zeolite

1-Structure-directing Agents
2-Clear Solutions
3- Organic Structure Directing Agent (OSDA)

1- Growth Inhibitor
2- Confined Space
3- Jacobsen and Madsen

1- Microemulsion
2- Monodisperse
3- Size distribution
1-Faujasite
2-Heulandite
3-Mordenite
1- Ferrierite
2- ZSM-11 (also known as MEL) contains a two dimensional 10-ring pore structure.
3- Zeolite framework type CHA (Chabazite, SSZ-13)
4- Zeolite framework type AFI (AlPO-5)
1- Infrared Spectroscopy
2- Near Infrared Region (NIR)

1- Mid Infrared Region (MIR)
) 2- Far Infrared Region (FIR
1-Interferometer
2- Detector
3- Felgett Advantage
4-Jaquinot Advantage
5-Conne's Advantage
6-Globar
7-Nernst Glower

1- Specular Reflectance (SR)
2- Reflection-Absorption
3- Attenuated Total Reflectance (ATR)
4-Diffuse Reflectance(DR)

1- Diffuse Reflectance Infrared Fourier-Transform Spectrometer (DRIFTS)
1- Free induction decay
1- Tetra-methylsilane
1-Chemometrics
2-Wold
3-Kowalski
4-International Chemometrics Society
5-Frank
6-Experimental design
1-screening
2-factorial design
3-plackett-burman design
4- Full Factorial Design

1- Two – Level Factorial Design
2- Mixed – Level Factorial Design
3- Fractional Factorial Design
4- optimisaation
5-mixture design
6-central composite design
7-saving time
8-Taguchi design
1-Quantitative modeling
2-Calibration Design
3-Response Surface Design

1-Factor Analysis
2- Evolving Factor Analysis
3-Maeder
1-Soft modeling Analysis
2-Multivariate Curve Resolution-Aiternating Least Square
3-Tauler
1-lack of fit

—————

————————————————————

—————

————————————————————

0

4

8

48


تعداد صفحات : 53 | فرمت فایل : word

بلافاصله بعد از پرداخت لینک دانلود فعال می شود