مقاله:
آشنایی با ماشینهای سنکرون
فهرست:
سیر تکاملی ژنراتورهای سنکرون
تاریخچه
تحولات دهه 1970
جمع بندی تحولات دهه 1970
تحولات دهه 1980
جمع بندی تحولات دهه 1980
موتورهای جریان متناوبAC
معایب موتور سنکرون:
کاربرد موتور سنکرون:
تحقیق در زمینه طراحی ژنراتورهای سنکرون کوچک تا توان یک مگاوات و ساخت یک نمونه آزمایشگاهی
منابع:
WWW.NRI.AC.IR
WWW.BARGH.COM
سیر تکاملی ژنراتورهای سنکرون
هدف از انجام این تحقیق بررسی سیر تحقیقات انجام شده با موضوع طراحی ژنراتور سنکرون است. به این منظور، بررسی مقالات منتشر شده IEEE که با این موضوع مرتبط بودند، در دستور کار قرار گرفت. به عنوان اولین قدم کلیه مقالات مرتبط در دهه های مختلف جستجو و بر مبنای آنها یک تقسیم بندی موضوعی انجام شد. سپس سعی شد بدون پرداختن به جزییات، سیرتحولات استخراج شود. رویکرد کلی این بوده است که تحولات دارای کاربرد صنعتی بررسی شود.
با توجه به گستردگی موضوع و حجم مطالب، این گزارش در دو بخش ارایه شده است. در بخش اول ابتدا پیشرفتهای اولیه ژنراتورهای سنکرون از آغاز تا دهه 1970 بررسی شده است و در ادامه تحولات دهه های 1970 و 1980 به تفصیل مورد توجه قرار گرفته اند. در پایان هر دهه یک جمعبندی از کل فعالیتهای صورت گرفته ارایه و سعی شده است ارتباط منطقی پیشرفتهای هر دهه با دهه های قبل و بعد بیان شود.ماشین سنکرون همواره یکی از مهمترین عناصر شبکه قدرت بوده و نقش کلیدی در تولید انرژی الکتریکی و کاربردهای خاص دیگر ایفاء کرده است.
ساخت اولین نمونه ژنراتور سنکرون به انتهای قرن 19 برمی گردد. مهمترین پیشرفت انجام شده در آن سالها احداث اولین خط بلند انتقال سه فاز از لافن به فرانکفورت آلمان بود. درکانون این تحول؛ یک هیدروژنراتور سه فاز 210 کیلووات قرار گرفته بود.
علیرغم مشکلات موجود در جهت افزایش ظرفیت وسطح ولتاژ ژنراتورها، در طول سالهای بعد تلاشهای گسترده ای برای نیل به این مقصود صورت گرفت.مهمترین محدودیتها در جهت افزایش ظرفیت، ضعف عملکرد سیستمهای عایقی و نیز روشهای خنک سازی بود. در راستای رفع این محدودیتها ترکیبات مختلف عایقهای مصنوعی، استفاده از هیدروژن برای خنک سازی و بهینه سازی روشهای خنک سازی با هوا نتایج موفقیت آمیزی را در پی داشت به نحوی که امروزه ظرفیت ژنراتورها به بیش از MVA1600 افزایش یافته است.در جهت افزایش ولتاژ، ابداع پاورفرمر در انتهای قرن بیستم توانست سقف ولتاژ تولیدی را تا حدود سطح ولتاژ انتقال افزایش دهد به نحوی که برخی محققان معتقدند در سالهای نه چندان دور، دیگر نیازی به استفاده از ترانسفورماتورهای افزاینده نیروگاهی نیست.همچنین امروزه تکنولوژی ژنراتورهای ابررسانا بسیار مورد توجه است. انتظار می رود با گسترش این تکنولوژی در ژنراتورهای آینده، ظرفیتهای بالاتر در حجم کمتر قابل دسترسی باشند.
تاریخچه
ژنراتور سنکرون تاریخچه ای بیش از صد سال دارد. اولین تحولات ژنراتور سنکرون در دهه 1880 رخ داد. در نمونه های اولیه مانند ماشین جریان مستقیم، روی آرمیچر گردان یک یا دو جفت سیم پیچ وجود داشت که انتهای آنها به حلقه های لغزان متصل می شد و قطبهای ثابت روی استاتور، میدان تحریک را تامین می کردند. به این طرح اصطلاحاً قطب خارجی می گفتند. در سالهای بعد نمونه دیگری که در آن محل قرار گرفتن میدان و آرمیچر جابجا شده بود مورد توجه قرار گرفت. این نمونه که شکل اولیه ژنراتور سنکرون بود، تحت عنوان ژنراتور قطب داخلی شناخته و جایگاه مناسبی در صنعت برق پیدا کرد. شکلهای مختلفی از قطبهای مغناطیسی و سیم پیچهای میدان روی رتور استفاده شد، در حالی که سیم پیچی استاتور، تکفاز یا سه فاز بود. محققان بزودی دریافتند که حالت بهینه از ترکیب سه جریان متناوب با اختلاف فاز نسبت به هم بدست می آید. استاتور از سه جفت سیم پیچ تشکیل شده بود که در یک طرف به نقطه اتصال ستاره و در طرف دیگر به خط انتقال متصل بودند.
در واقع ایده ماشین جریان متناوب سه فاز، مرهون تلاشهای دانشمندان برجسته ای مانند نیکولا تسلا، گالیلئو فراریس، چارلز برادلی، دبروولسکی، هاسلواندر بود.هاسلواندر اولین ژنراتور سنکرون سه فاز را در سال 1887 ساخت که توانی در حدود 8/2 کیلووات را در سرعت 960 دور بر دقیقه (فرکانس 32 هرتز) تولید می کرد. این ماشین دارای آرمیچر سه فاز ثابت و رتور سیم پیچی شده چهار قطبی بود که میدان تحریک لازم را تامین می کرد. این ژنراتور برای تامین بارهای محلی مورد استفاده قرار می گرفت.در سال 1891 برای اولین بار ترکیب ژنراتور و خط بلند انتقال به منظور تامین بارهای دوردست با موفقیت تست شد. انرژی الکتریکی تولیدی این ژنراتور توسط یک خط انتقال سه فاز از لافن به نمایشگاه بین المللی فرانکفورت در فاصله 175 کیلومتری منتقل می شد. ولتاژ فاز به فاز 95 ولت، جریان فاز 1400 آمپر و فرکانس نامی 40 هرتز بود. رتور این ژنراتور که برای سرعت 150 دور بر دقیقه طراحی شده بود، 32 قطب داشت. قطر آن 1752 میلیمتر و طول موثر آن 380 میلیمتر بود. جریان تحریک توسط یک ماشین جریان مستقیم تامین می شد. استاتور آن 96 شیار داشت که در هر شیار یک میله مسی به قطر 29 میلیمتر قرار می گرفت. از آنجا که اثر پوستی تا آن زمان شناخته نشده بود، سیم پیچی استاتور متشکل از یک میله برای هر قطب / فاز بود. بازده این ژنراتور 5/96% بود که در مقایسه با تکنولوژی آن زمان بسیار عالی می نمود. طراحی و ساخت این ژنراتور را چارلز براون انجام داد.در آغاز، اکثر ژنراتورهای سنکرون برای اتصال به توربینهای آبی طراحی می شدند، اما بعد از ساخت توربینهای بخار قدرتمند، نیاز به توربوژنراتورهای سازگار با سرعت بالا احساس شد. در پاسخ به این نیاز اولین توربورتور در یکی از زمینه های مهم در بحث ژنراتورهای سنکرن، سیستم عایقی است. مواد عایقی اولیه مورد استفاده مواد طبیعی مانند فیبرها، سلولز، ابریشم، کتان، پشم و دیگر الیاف طبیعی بودند. همچنین رزینهای طبیعی بدست آمده از گیاهان و ترکیبات نفت خام برای ساخت مواد عایقی مورد استفاده قرارمی گرفتند. در سال 1908 تحقیقات روی عایقهای مصنوعی توسط دکتر بایکلند آغاز شد. در طول جنگ جهانی اولی رزین های آسفالتی که بیتومن نامیده می شدند، برای اولین بار همراه با قطعات میکا جهت عایق شیار در سیم پیچهای استاتور توربوژنراتورها مورد استفاده قرار گرفتند. این قطعات در هر دو طرف، با کاغذ سلولز مرغوب احاطه می شدند. در این روش سیم پیچهای استاتور ابتدا با نوارهای سلولز و سپس با دو لایه نوار کتان پوشیده می شدند. سیم پیچها در محفظه ای حرارت می دیدند و سپس تحت خلا قرار می گرفتند. بعد از چند ساعت عایق خشک و متخلخل حاصل می شد. سپس تحت خلا، حجم زیادی از قیر داغ روی سیم پیچ ها ریخته می شد. در ادامه محفظه با گاز نیتروژن خشک با فشار 550 کیلو پاسکال پر و پس از چند ساعت گاز نیتروژن تخلیه و سیم پیچها در دمای محیط خنک و سفت می شدند. این فرآیند وی پی آی نامیده می شد.
در اواخر دهه 1940 کمپانی جنرال الکتریک به منظور بهبود سیستم عایق سیم پیچی استاتور ترکیبات اپوکسی را برگزید. در نتیجه این تحقیقات، یک سیستم به اصطلاح رزین ریچ عرضه شد که در آن رزین در نوارها و یا وارنیش مورد استفاده بین لایه ها قرار می گرفت.
در دهه های 1940 تا 1960 همراه با افزایش ظرفیت ژنراتورها و در نتیجه افزایش استرسهای حرارتی، تعداد خطاهای عایقی به طرز چشمگیری افزایش یافت. پس از بررسی مشخص شد علت اکثر این خطاها بروز پدیده جدا شدن نوار یا ترک خوردن آن است. این پدیده به علت انبساط و انقباض ناهماهنگ هادی مسی و هسته آهنی به وجود می آمد. برای حل این مشکل بعد از جنگ جهانی دوم محققان شرکت وستینگهاوس کار آزمایشگاهی را بر روی پلی استرهای جدید آغاز کرده و سیستمی با نام تجاری ترمالاستیک عرضه کردند.نسل بعدی عایقها که در نیمه اول دهه 1950 مورد استفاده قرار گرفتند، کاغذهای فایبرگلاس بودند. در ادامه در سال 1955 یک نوع عایق مقاوم در برابر تخلیه جزیی از ترکیب 50 درصد رشته های فایبرگلاس و 50 درصد رشته های PET بدست آمد که روی هادی پوشانده می شد و سپس با حرارت دادن در کوره های مخصوص، PET ذوب شده و روی فایبرگلاس را می پوشاند. این عایق بسته به نیاز به صورت یک یا چند لایه مورد استفاده قرار می گرفت. عایق مذکور با نام عمومی پلی گلاس و نام تجاری داگلاس وارد بازار شد.مهمترین استرسهای وارد بر عایق استرسهای حرارتی است. بنابراین سیستم های عایقی همواره در ارتباط تنگاتنگ با سیستم های خنک سازی بوده اند. خنک سازی در ژنراتورهای اولیه توسط هوا انجام می گرفت. بهترین نتیجه بدست آمده با این روش خنک سازی یک ژنراتور MVA200 با سرعت rpm1800 بود که در سال 1932 در منطقه بروکلین نیویورک نصب شد. اما با افزایش ظرفیت ژنراتورها نیاز به سیستم خنک سازی موثرتری احساس شد. ایده خنک سازی با هیدروژن اولین بار در سال 1915 توسط ماکس شولر مطرح شد. تلاش او برای ساخت چنین سیستمی از 1928 آغاز و در سال 1936 با ساخت اولین نمونه با سرعت rpm3600 به نتیجه رسید. در سال 1937 جنرال الکتریک اولین توربوژنراتور تجاری خنک شونده با هیدروژن را روانه بازار کرد. این تکنولوژی در اروپا بعد از سال 1945 رایج شد. در دهه های 1950 و 1960 روشهای مختلف خنک سازی مستقیم مانند خنک سازی سیم پیچ استاتور با گاز، روغن و آب پا به عرصه ظهور گذاشتند تا آنجا که در اواسط دهه 1960 اغلب ژنراتورهای بزرگ با آب خنک می شدند. ظهور تکنولوژی خنک سازی مستقیم موجب افزایش ظرفیت ژنراتورها به میزان MVA1500 شد.یکی از تحولات برجسته ای که در دهه 1960 به وقوع پیوست تولید اولین ماده ابررسانای تجاری یعنی نیوبیوم- تیتانیوم بود که در دهه های بعدی بسیار مورد توجه قرار گرفت.
تحولات دهه 1970
در این دهه تحول مهمی در فرآیند عایق کاری ژنراتور رخ داد. قبل از سال 1975 اغلب عایقها را توسط رزینهای محلول در ترکیبات آلی فرار اشباع می کردند. در این فرآیند، ترکیبات مذکور تبخیر و در جو منتشر می شد. با توجه به وضع قوانین زیست محیطی و آغاز نهضت سبز در اوایل دهه 1970، محدودیتهای شدیدی بر میزان انتشار این مواد اعمال شد که حذف آنها را از این فرآیند در پی داشت. در نتیجه استفاده از مواد سازگار با محیط زیست در تولید و تعمیر ماشینهای الکتریکی مورد توجه قرار گرفت. استفاده از رزینهای با پایه آبی یکی از اولین پیشنهاداتی بود که مطرح شد، اما یک راه حل جامعتر که امروزه نیز مرسوم است، کاربرد چسبهای جامد بود. در همین راستا تولید نوارهای میکای رزین ریچ بدون حلال نیز توسعه یافت.از دیگر پیشرفتهای مهم این دهه ظهور ژنراتورهای ابررسانا بود. یک ماشین ابررسانا عموماً از یک سیم پیچ میدان ابررسانا و یک سیم پیچ آرمیچر مسی تشکیل شده است. هسته رتور عموماً آهنی نیست، چرا که آهن به دلیل شدت بالای میدان تولیدی توسط سیم پیچی میدان اشباع می شود. فقط در یوغ استاتور از آهن مغناطیسی استفاده می شود تا به عنوان شیلد و همچنین منتقل کننده شار بین قطبها عمل کند. عدم استفاده از آهن، موجب کاهش راکتانس سنکرون (به حدود pu5/0- 3/0) در این ماشینها شده که طبعاً موجب پایداری دینامیکی بهتر می شود. همانطور که اشاره شد، اولین ماده ابررسانای تجاری نیوبیوم- تیتانیوم بود که تا دمای 5 درجه کلوین خاصیت ابررسانایی داشت. البته در دهه های بعد پیشرفت این صنعت به معرفی مواد ابررسانایی با دمای عملکرد 110 درجه کلوین انجامید. براین اساس مواد ابررسانا را به دو گروه دما پایین مانند نیوبیوم – تیتانیوم و دما بالا مانند BSCCO-2223 تقسیم می کنند. از اوایل دهه 1970 تحقیقات بر روی ژنراتورهای ابررسانا با استفاده از هادیهای دما پایین آغاز شد. در این دهه کمپانی وستینگهاوس تحقیقات برای ساخت یک نمونه دوقطبی را با استفاده هادیهای دماپایین آغاز کرد. نتیجه این پروژه ساخت و تست یک ژنراتور MVA5 در سال 1972 بود.در سال 1970 کمپانی جنرال الکتریک ساخت یک ژنراتور ابررسانا را با استفاده از هادی های دماپایین، با هدف نصب در شبکه آغاز کرد.ساخت و تست این ژنراتور MVA20، دو قطب و rpm3600 در سال 1979 به پایان رسید. در این ماشین از روش طراحی هسته هوایی بهره گرفته شده بود و سیم پیچ میدان آن توسط هلیم مایع خنک می شد. این ژنراتور، بزرگترین ژنراتور ابررسانای تست شده تا آن زمان (1979) بود.در سال 1979 وستینگهاوس و اپری ساخت یک ژنراتور ابررسانای MVA300 را آغاز کردند. این پروژه در سال 1983 به علت شرایط بازار جهانی با توافق طرفین لغو شد.در همین زمینه کمپانی زیمنس ساخت ژنراتورهای دماپایین را در اوایل دهه 1970 شروع کرد. در این مدت یک نمونه رتور و یک نمونه استاتور با هسته آهنی برای ژنراتور MVA 850 با سرعت rpm3000 ساخته شد، اما به دلیل مشکلاتی تست عملکرد واقعی آن انجام نشد.در این دهه آلستوم نیز طراحی یک رتور ابررسانا برای یک توربو ژنراتور سنکرون را آغاز کرد. این رتور در یک ماشین MW250 به کار رفت.با توجه به اهمیت خنک سازی در کارکرد مناسب ژنراتورهای ابررسانا، همگام با توسعه این صنعت، طرحهای خنک سازی جدیدی ارایه شد. در 1977 اقای لاسکاریس یک سیستم خنک سازی دوفاز (مایع- گاز) برای ژنراتورهای ابررسانا ارایه کرد. در این طرح بخشی از سیم پیچ در هلیم مایع قرار می گرفت و با جوشش هلیم دردمای 2/4 کلوین خنک می شد. جداسازی مایع ازگاز توسط نیروی گریز از مرکز ناشی از چرخش رتور صورت می گرفت.
جمع بندی تحولات دهه 1970
با بررسی مقالات IEEE این دهه (28 مقاله) در موضوعات مختلف مرتبط با ژنراتور سنکرون به نتایج زیر می رسیم:
1.شایان ذکر است بررسی کل مقالات در دهه های مختلف نشان می دهد که زمینه های اصلی مورد توجه طرحهای بدون جاروبک، سیستمهای خنک سازی، سیستمهای تحریک، روشهای عددی، سیستم عایقی، ملاحظات مکانیکی، ژنراتور آهنربای دائم، پاورفرمر و ژنراتورهای ابررسانا بوده اند. تمرکز اکثر تحقیقات بر روی کاربرد مواد ابررسانا در ژنراتورها بوده است.
2. استفاده از روشهای کامپیوتری برای تحلیل و طراحی ماشینهای الکتریکی آغاز شد.
3. حلالها از سیستمهای عایق کاری حذف شدند و تکنولوژی رزین ریچ بدون حلال ارایه شد.
تحولات دهه 1980
در این دهه نیز همچون دهه های گذشته سیستم های عایقی از زمینه های مهم تحقیقاتی بوده است. در این دهه آلستوم یک فرمول جدید اپوکسی بدون حلال کلاس F در ترکیب با گلاس فابریک و نوع خاصی از کاغذ میکا با نام تجاری دورتناکس را ارایه داد. این سیستم عایق کاری دارای استحکام مکانیکی بیشتر، استقامت عایقی بالاتر، تلفات دی الکتریک پایینتر و مقاومت حرارتی کمتری نسبت به نمونه های قبلی بود.
در ادامه کار بر روی پروژه های ابررسانا، در سال 1988 سازمان توسعه تکنولوژی صنعتی و انرژیهای نو ژاپن پروژه ملی 12 ساله سوپر جی ام را آغاز کرد که نتیجه آن در دهه های بعدی به ثمر رسید.
سیستم های خنک سازی ژنراتورهای ابررسانا هنوز در حال پیشرفت بودند. در این زمینه می توان به ارایه طرح سیستم خنک سازی تحت فشار توسط انستیتو جایری ژاپن اشاره کرد. این طرح که در سال 1985 ارایه شد دارای یک مبدل حرارتی پیشرفته و یک مایع ساز هلیم با ظرفیت 350 لیتر بر ثانیه بود.
در این مقطع شاهد تحقیقاتی در زمینه مواد آهن ربای دائم بودیم. استفاده از آهنرباهای نئودیمیوم – آهن- بورون در این دهه تحول عظیمی در ساخت ماشینهای آهنربای دائم ایجاد کرد. مهمترین خصوصیت آهنرباهای نئودیمیوم- آهن- بورون انرژی مغناطیسی (BHmax) بالای آنهاست که سبب می شود قیمت هر واحد انرژی مغناطیسی کاهش یابد. علاوه بر این، انرژی زیاد تولیدی امکان به کارگیری آهنرباهای کوچکتر را نیز فراهم می کند، بنابراین اندازه سایر اجزا ماشین از قبیل قطعات آهن و سیم پیچی نیز کاهش می یابد و در نتیجه ممکن است هزینه کل کمتر شود. شایان ذکر است حجم بالایی از تحقیقات انجام شده این دهه در زمینه ژنراتورهای بدون جاروبک و خودتحریکه برای کاربردهای خاص بوده که به علت عمومیت نیافتن در صنعت ژنراتورهای نیروگاهی از شرح آنها صرفنظر می شود.
جمع بندی تحولات دهه 1980
با بررسی مقالات IEEE این دهه (41 مقاله) در موضعات مختلف مرتبط با ژنراتور سنکرون به نتایج زیر می رسیم:
1- تمرکز موضوعی مقالات در شکل نشان داده شده است.
2- روشهای قبلی عایق کاری به منظور کاهش مقاومت حرارتی عایق بهبود یافت.
3- مطالعات وسیعی روی ژنراتورهای سنکرون بدون جاروبک بدون تحریک صورت گرفت.
4- فعالیت روی پروژه های ژنراتورهای ابررسانای آغاز شده در دهه قبل ادامه یافت.
5- سیستمهای خنک سازی جدیدی برای ژنراتورهای ابررسانا ارایه شد.
6- روش اجزای محدود در طراحی و تحلیل ژنراتورهای سنکرون خصوصاً ژنراتورهای آهنربای دائم به شکل گسترده ای مورد استفاده قرار گرفت.
موتورهای جریان متناوبAC
موتورهای سنکرون
موتورهای آسنکرون
موتورهای آسنکرون به علت نداشتن کلکتور و سادگی ساختمان آن بیشتر از موتور سنکرون متداول است.
مزایای موتور سنکرون:
1- این موتور دارای ضریب قدرت مناسب و قابل تنظیم است.
2- بازده عالی دارد.
3- در مقابل نوسان ولتاژ حساسیت ندارد.
4- امکان بکار بردن آن به طور مستقیم با ولتاژ زیاد وجود دارد.
5- با تحریک مناسب هیچگونه قدرت راکتیو مصرف نمیکند و فقط قدرت اکتیو مناسب می گیرد.
6- از این موتور میتوان به عنوان مولد قدرت راکتیو برای بالا بردن ضریب قدرت خط استفاده کرد.
معایب موتور سنکرون:
1- یک وسیله راه اندازی اولیه که موتور کمکی و غیره می باشد احتیاج دارد.
2- علاوه بر جریان متناوب برای سیم پیچ استاتور ، جریان دائم برای قطبهای آن هم مورد احتیاج است در نتیجه قیمت ماشین را نسبت به مشابه خود بالا میبرد.
3- سرعت آن ثابت است در نتیجه قابل تنظیم است.
4- نداشتن تحمل اضافه بار ( در صورتیکه خیلی زیادتر از حد مجاز به آن بار دهند میایستد و دوباره بایستی آنرا راه اندازی کرد.(
کاربرد موتور سنکرون:
به خاطر راه اندازی مشکل موتور سنکرون ، مورد استفاده آن محدود است. به خاطر سرعت ثابت آن، در مواردیکه دور ثابت نیاز باشد، استفاده می شود. در وسایل دقیق مانند ساعتهای الکتریکی و گرام و ….
کاربرد مهم موتور سنکرون ، برای اصلاح Cosφ است. بار روی آن قرار نداده یعنی موتور بدون بار کار میکند در این حالت موتور سنکرون را خازن سنکرون گویند.
تحقیق در زمینه طراحی ژنراتورهای سنکرون کوچک تا توان یک مگاوات و ساخت یک نمونه آزمایشگاهی
ژنراتورهای سنکرون کوچک مولدهایی هستند که برای تولید انرژی الکتریکی در مناطق دوردست و یا بهعنوان منابع تولید انرژی الکتریکی اضطراری برای بارهای حساسی مانند بیمارستانها، خطوط نورد و … بهطور وسیع استفاده میشوند و لذا تدوین دانش فنی طراحی و ساخت این تجهیزات از دیدگاههای جلوگیری خروج ارز از کشور برای خرید دانش فنی طراحی و ساخت و انطباق ساختار آنها با شرائط جغرافیای و بازار داخلی مواد اولیه حائز اهمیت فراوان میباشد و این درحالیست که بهواسطه فقدان چنین دانشی، برخی از شرکتهای سازنده مبادرت به خرید دانش فنی ساخت رنجهای توانی مشخصی (که مصرف بیشتری دارند) نموده و امکان طراحـی رنـجهای دیگر را ندارند و درصورت نیاز ناچار به سعـی و خطـا بوده که البته مستلـزم هزینـه هنگفـت نمونهسازی میگردد. پروژه مزبور با هدف دستیابی به دانش فنی طراحی و ساخت این دسته از تجهیزات تعریف شد و باتوجهبه تنوع موضوعی و حجم گسترده فعالیتها، با سازماندهی و تقسیم شرح خدمات در سه گروه کاری برق، مکانیک و متالورژی و در سه فاز اجرا گردید. فاز صفر بهطور عمده حول محورهای گردآوری منابع و مراجع، انتخاب و تهیه نرمافزار اجزاء محدود مناسب و طراحی مفهومی بوده و استخراج دانش فنی طراحی تفصیلی و تهیه الگوریتمهای موردنیاز جهت تعیین مشخصات ابعادی و موادی بر مبنای مشخصات ورودی مانند ولتاژ، توان، ضریب توان و سرعت در فاز یک انجام شده است و درنهایت در فاز دوم در جهت تائید الگوریتمهای طراحی و تحلیلی علاوهبر تائید بهروش اجزاء محدود، یک نمونه ژنراتور با مشخصات توان نامی 50 کیلوولت آمپر، ولتاژ نامی 400 ولت، ضریب توان نامی 8/0 پسفاز و سرعت 1500 دور بر دقیقه طراحی، تحلیل و پس از تهیه نقشههای ساخت، توسط شرکت توربوژنراتور و با نظارت پژوهشگاه نیرو، ساخته شده است که آزمایشهای صورتگرفته حاکی از دقت مناسب الگوریتمها و روابط طراحی و تحلیلی بوده و موید دانش فنی حاصله میباشد.E تهیه نرمافزار طراحی الکترومغناطیسی ژنراتورهای سنکرون زیر یک مگاوات. – تهیه نرمافزار تحلیل ریاضی طرح الکترومغناطیسی با قابلیت تعیین منحنیهای اشباع بیباری، اتصال کوتاه دائمی، ویشکل و کمیتهای تلفات، بازده، پارامترهای دینامیکی و منحنیهای زمانی مدار باز ناگهانی، اتصال کوتاه ناگهانی و گشتاور گذرا. – استخراج الگوریتم مدلسازی و تحلیل اجزاء محدود ژنراتور در شرائط بیباری با قابلیت تعیین منحنیهای چگالی شار در مسیرهای موردنظر، تلفات هسته، شکل موج زمانی ولتاژ بیباری، تحلیل هارمونیکی و منحنی اشباع بیباری. – تهیه نرمافزار طراحی و تحلیل محور با قابلیت تعیین سرعتهای بحرانی و میزان انحراف مرکز محور در سرعت موردنظر. – استخراج الگوریتمهای طراحی و تحلیل سیستم تهویه، یاتاقان، درپوش و بدنه. – استخراج الگوریتم مدلسازی محور درمحیط اجزاء محدود (انسیس) وتحلیل خستگی و تعیین نقاطبحرانی. – استخراج روند ساخت سایر اجزاء ژنراتور. – امکانسنجی تهیه مواد اولیه در داخل کشور و ارزیابی قابلیتهای سازندگان داخلی در ارتباط با ژنراتورهای سنکرون کوچک.
1