تارا فایل

گزارش کارآموزی برق در شرکت الکتروتکنیک رازی




کارآموزی در شرکت الکتروتکنیک رازی

فهرست مطالب
عنوان صفحه
موتورهای القائی 1
راه اندازی 2
ترمز الکتریکی 3
کنترل سرعت 9
محرکه های موتور القایی کنترل شده با فرکانس 15
بادهی ترانسفورماتور 21
تنظیم ولتاژ 26
مراقبت و نگهداری از ترانسهای قدرت 30
روشهای خشک کردن ترانسها 35
دژنکتور 36
سکسیونرها 40
ترانسفورماتور های ولتاژ P.T 45
ترانسفورماتورهای جریانCT 47

موتورهای القائی :
موتورهای القایی بخصوص موتورهای قفس سنجابی مزایایی نسبت به موتورهای DC دارند . از مواردی نظیر نیاز به نگهداری کمتری , قابلیت اطمینان بالاتر , هزینه, وزن , حجم و اینرسی کمتر , راندمان بیشتر , قابلیت عملرکد در محیط های با گرد و غبار و در محیط های قابل انفجار را می توان نام برد. مشکل اصلی موتورهای DC وجود کموتاتور و جــاروبک است , که نگهداری زیاد و پر هزینه و نامناسب بودن عملکرد موتور در محیط های بار گرد و غبار بالا و قابل انفجار را بدینال دارد. با توجه به مزایای فوق در تمامی کاربردهای , موتورهای القایی بطور وسیع بر سایر موتورهای الکتریکی ترجیح داده می شوند . با اینحال تا حدی پیش از موتورهای القایی فقط در کاربردهای سرعت ثابت استفاده شده است . و در کابردهای سرعت متغییر موتورهای DC ترجی داده شده اند. این امر ناشی از آن است که روشهای مرسوم در کنترل سرعت و موتوهای القایی هم غیر اقتصادی و هم دارای راندمان کم بوده است .
با بهبود در قابلیت ها و کاهش در هزینه تریستورها و اخیراً در ترازیستورهای قدرت و GTO ها امکان ساخت محرکه های سرعت متغییر با استفاده از موتورهای القایی بوجود آمده است که در برخی موارد حتی از نظر هزینه و عملکرد از محرکه های با موتور DC نیز پیشی گرفته اند. در نتیجه این پیشرفت ها , محرکه های موتورهای القایی در برخی کاربردهای سرعت متغییر بجای محرکه های DC مورد استفاده قرار گرفته اند . پیش بینی می شود در آینده موتورهای القایی بطور گسترده در محرکه های سرعت متغییر مورد استفاده قرار خواهند گرفت .
راه اندازی :
زمانیکه موتور القایی بطور مستقیم به ولتاژ خط متصل می شود . جریان راه اندازی بزرگی را می کشد. در شرایطی که امپدانس داخلی منبع تغذیه بزرگ و یا ظرفیت جریان خروجی آن محدود باشد و راه اندازی موتور موجب افت ولتاژ خط می شود . در نتیجه سایر بارهای متصل به آن منبع تغذیه دچار اشکال می گردند . لذا لازم است . با استفاده از روشهایی جریان راه اندازی محدود شود . رفتار موتورهای فقس سنجابی در شـــــرایط راه اندازی با توجه به نوع آن (کلاس موتور ) متفاوت می باشد. راه اندازی موتورهای روتور ســـــیم پیــــچی شده با افزایش مقاومت خارجی روتور انجام می شود و جریان راه اندازی نیز محدود می شود . روش های دیگری هم وجود دارد که هم در مورد موتورهای قفس سنجابی و هم در مورد روتور سیم بندی شده کاربرد دارند . بطور مثال می توان از کاهش ولتاژ تغذیه , تغییر فرکانس استاتور و یا افزایش امپدانس استاتور نام برد. در موتورهای رتور سیم بندی شده همچنین از تزریق ولتاژ در مدار رتور نیز به منظور کاهش جریان راه اندازی می توان استفاده نمود . از این روشها بجز روش افزایش امپدانس استاتور در کنترل سرعت موتورها نیز استفاده می شود که در قسمت های بعدی مورد بحث قرار می گیرند . از روشهای متعارف کاهش جریان را اندازی , کاهش ولتاژ تغذیه است که توسط کلیه ستاره ـ مثلث و یا اتوترانس انجام می شود . با تغییر سیم بندی از مثلث به ستاره وجریان و راه اندازی با ضریب 3/1 و گشتاور راه اندازی با ضریب3/1 تقلیل می یابند . موتورهای بزرگ معمولاً با دو سیم بندی در استاتور طراحی می شوند. بطوریکه در حالت عادی معمولاً هر دو سیم بندی بطور موازی در مدار قرار می گیرند و در طی مرحله راه اندازی فقط یکی از سیم بندی در مدار قرار می گیرند . این کار باعث افزایش امپدانس معادل موتور شده و در نتیجه جریان راه اندازی محدود می شود . این روش بنام روش راه اندازی با سیم بندی کسر (PORT WINDING STARTING) نامیده می شود .
ترمز الکتریکی :
در بخش های گذشته ضرورت استفاده از ترمز الکتریکی مورد بررسی قرار گرفت . همانند موتورهای DC روشهای متفاوتی در ترمز الکتریکی موتورهای القایی مورد استفاده قرار می گیرند . که به سه دسته زیر تقسیم می شوند :
1- ترمز ژنراتوری
2- ترمز با معکوس کردن تغذیه
3- ترمز دینامیکی یا رئوستایی
1- در حالت ترمز ژنراتوری ماشین القایی همانند ژنراتور آسنکرون رفتار مینماید و انرژی مکانیکی ناشی از بار و موتور به انرژی الکتریکی تبدیل می شود. انری فوق به منبع تغذیه باز گردانده می شود که می توان از آن بطور مفید استفاده نمود. واضع است که اگر منبع تغذیه امکان جذب انرژی بازگشتی ناشی از ترمز الکتریکی را نداشته باشد عملکرد محرکه در حالت ترمز ژنراتوری عملی نخواهد بود . زمانیکه سرعت موتور در بالاتر از سرعت سنکرون قرار می گیرد . سرعت نسبی بین میدان گردان رتور و استاتور منفی است . لذا ولتاژ و جهت جریان رتور عکس حالت موتوری خواهد گردید. بنابراین جهت جریان استاتور نیز عکس می گردد تا تعادل آمپر دور فاصله هوایی حفظ گردد. در نتیجه جهت قدرت الکتریکی نیز تغییر کرده و قدرت از سوی ماشین به منبع تغذیه جاری می شود و موتور همانند یک ژنراتور القایی عمل نماید . جریان مغناطیس کنندگی مورد نیاز برای ایجاد میدان گردان از منبع تغذیه استاتور تامین می شود. لذا عملکرد ژنراتور القایی امکانپذیر نمی باشد . مگر آنکه استاتور به منبع تغذیه متصل باشد برای قرار گرفتن در شرایط ترمز ژنراتوری لازم است سرعت موتور از سرعت سنکرون بیشتر باشد . زمانی که استاتور به منبع تغذیه با فرکانس ثابت متصل باشد . حالت ژنراتوری تنها با افزایش سرعت موتور به بالاتر از سرعت سنکرون امکان پذیر می گردد . ولی درصورتی که از منبع فرکانس متغییر استفاده شود. می توان فرکانس منبع را به گونه ای تنظیم نمود که سرعت میدان گردان همواره از سرعت موتور کوچکتر باشد .بنابراین ترمز ژنراتوری تا سرعت های کم عملی خواهد بود . زمانیکه با استفاده از ترمز ژنراتوری سرعت بارهای فعال ثــابت نــگاه داشته می شود افت کوتاه مدت ولتاژ تغذیه و یا افزایش لحظه ای گشتاور بار ممکن است نقطه کار را به ناحیه ناپایدار ببرد. لذا برای حفظ ایمنی در چنین وضعیتی از ترمز مکانیکی در کنار ترمز ژنراتوری استفاده می شود تا از افزایش شدید سرعت جلوگیری بعمل آید. در روش دیگر از خازن که با موتور سری می شود استفاده می شود . این عمل باعث می شود گشتاور ترمزی افزایش یابد . اگر از موتور با رتور سیم بندی شده استفاده شود. افزایش مقاومت روتور محدود ناحیه پایدار را افزایش می دهد.
2- در این حالت S>1 می باشد . اگر موتور به تغذیه با توالی مثبت متصل شود . S>1 وقتی بدست می آید که رتور در جهت عکس میدان استاتور دوران نماید. از آنجایی که سرعت نسبی میدان گردان روتور و استاتور مثبت است, گشـــتاورمــــوتور مثــبت است و موتور قدرت الکتریکی را از منبع جذب مینماید. چون موتور در جهت عکس دوران می کند یک گشتاور مثبت حالت ترمزی را ایجاد می کند , قدرت مکانیکی بار و اینرسی موتور با قدرت الکــتریکتــی تبــدیل شده و همچنین قدرت تغذیه شده توسط منبع در مقاومت های موتور بصورت حرارت تلف می شود . بنابراین در این روش تمامی انرژی ترمزی بصورت حرارتی تلف می شود . لذا این روش یک روش بی بازده است . با ولتاژ توالی منفی وقتی موتور در جهت مثبت دوران کند. تغییر توالی ولتاژ استاتور باعث ایجاد حالت ترمزی می شود. تغییر توالی ولتاژ استاتور با جابجایی دو فاز تغذیه به سادگی انجام می شود. گشتاور موتور در سرعت صفر مخالف صفر است لذا برای توقف کامل موتور. در نزدیکی یا روی سرعت صفر بایستی موتور از تغدیه جدا شود . بنابراین لازم است از عناصر و یا وسایلی برای تشخیص صفر شدن سرعت و قطع موتور از منبع استفاده شود . چرا که در غیر این صورت موتور در جهت عکس شروع به شتاب گیری می کند . لذا بطور کلی این روش برای حالت توقف کامل مناسب نیست بلکه در جهت عکس شروع به شتاب گیری می کند . لذا بطور کلی این روش برای حالت توقف کامل مناسب نیست بلکه برای تغییر جهت گردش موتور مناسب است .
3- در این روش موتور از منبع تغذیه AC قطع و به منیع تغذیه DC متصل می شود . جریان DC که در سیم بندی استاتور جاری می شود . میدان مغناطیسی ساکن را در فاصله هوایی ایجاد می کند . اختلاف سرعت میان میدان ساکن استاتور و میدان گردانی ایجاد می کند که در جهت عکس حرکت روتور دوران می نماید تا میدان نتیجه آن نسبت به استاتور ساکن گردد . لذا بواسطه آنکه دو میدان گردان رتور و استاتور ساکن می گردند و جریان رتور معکوس حالت موتوری می باشد لذا در کلیه سرعتهای گشتاور ترمزی ایجاد میگردد در سرعت صفر ( در حالت سکون ) گشتاور ترمزی صفر می گردد . مقدار جریان DC که در استاتور جاری است به مقاومت استاتور , که دارای مقدار کوچکی , بستگی دارد لذا برای محدود ساختن جریان در حد مجاز یک ولتاژ DC کوچک کافی است . برای این منظور از ترانس کاهنده و پل دیودی استفاده می شود . در شرایطی که گشتاور ترمزی کنترل شده ای مورد نیاز باشد ( گشتاور ترمز متغییر با سرعت ) از پل تریستوری بجای پل دیودی استفاده می شود . در شرایطی که به ترمز سریع نیاز باشد گشتاور ترمزی بزرگی تولید شود. لذا در این حالت جریان استاتور می تواند تا ده برای جریان نامی نیز برای مدت کوتاه افزایش یابد. اما به محض توقف موتور بایستی منبع قطع شود یا جریان به زیر جریان نامی تقلیل یابد . در غیر اینصورت موتور دچار اضافه حرارت خواهد شد .
کنترل سرعت :
در این بخش اصول کنترل سرعت محرکه های الکتریکی که در آنها از مبدل های نیمه هادی کنترل شده استفاده می شود. مورد بررسی قرار می گیرد. روشهای مرسوم عبارتنداز:
1- کنترل با منبع ولتاژ متغیر فرکانس ثابت
2- کنترل با منبع ولتاژ فرکانس متغیر
3- کنترل مقاومت رتور
4- کنترل از روش تزریق ولتاژ در مدار رتور
روشهای 3 و 4 فقط در موتورهای رتور سیم بندی شده قابل استفاده هستند .
1- گشتاور فاصه هوایی در موتورهای القایی منتاسب با مجذور ولتاژ تغذیه است . شکل کلی منحنی های سرعت گشتاور مشابه است ولی با مجذور ولتاژ تغییر می نماید . کنترل سرعت با تغییر ولتاژ تغذیه به گونه ای انجام می شود که در سرعت مورد نظر گشتاور بار بوسیله موتور تامین می شود . از آنجایی که افزایش ولتاژ به بالاتر از ولتاژ نامی مجاز نمی باشد بنابراین در این روش افزایش سرعت تا سرعت نامی امکان پذیر است. چون گشتاور در لغزش مشخص با مجذور ولتاژ متناسب است لذا جریان رتور مستقیماً متناسب با ولتاژ تفذیه است. در نتیجه نسبت گشتاور به جرسان با کاهش ولتاژ تغذیه کاهش می یابد . همچینین گشتاور موجود برای یکی بارگذاری حرارتی مشخص برای موتور کاهش می یابد . گشتاور شکست نیز با مجذور ولتاژ کم می شود . بنابراین بهره برداری در سرعت های پایین و با شرایط حرارتی طبیعی موتور در صورتی امکان پذیر است که گشتاور بار بار کاهش شرعت تقلیل باید بطور مثال می توان به بارهای پنکه ای بعنوان این دسته از بارهای متغییر اشاره نمود . برای داشتن محدوده وسیعی از تغییرات سرعت لازم است از موتورهای با لغزش نامی بالا استفاده شود . بنابراین موتورهای کلاس D افقی سنجابی با لغزش بین 10 تا 20 درصد یا بار نامی و یا موتورهای رتور سیم بندی شده با مقاومت خارجی بالا بکار گرفته می شوند . در موتورهای روتور سیم بندی شده بواسطه آنکه تلفات مسی رتور در مقاومت خارجی ایجاد ایجاد می شود نسبت به موتورهای کلاس D مناسب تر می باشند . لذا می توان از موتورهای کوچکتری نیز استفاده نمود .
2- سرعت سنگرون مستقیماً با فرکانس تغذیه متناسب است لذا با تغییر فرکانس تغذیه سرعت موتور به کمتر و بیشتر از سرعت نامی تغییر می نماید . ولتاژ القایی E متناسب با حاصل ضرب فرکانس و شار فاصله هوایی است . اگر از لغت ولتاژ استاتور طرف نظر شود می توان ولتاژ ورودی موتور را متناسب با حاصل ضرب شار و فرکاس در نظر گرفت اگر فرکانس بدون هیچ تغییر در ولتاژ تغذیه کاهش یابد شار فاصله فاصله هوایی افزایش می یابد . موتورهای القایی به گونه ای طراحی شوند که در نزدیکی ناحیه زانویی منحنی اشباع مغناطیسی قرار گریند . بناباین افزایش شار باعث می گردد که موتور با اشباع مواجه شود که در نتیجه , منجر به افزایش جریان مغناطیسی , افزایش تلفات هسته , ایجاد هارمونیک در شکل موج جریان و ولتاژ و افزایش نویز صورتی می گردد همانطور که افزایش شار باعث بروز شکلات ناشی از اشباع میگردد. کاهش شار نیز مناسب نمی باشد زیرا ظرفیت گشتاور موتور تقلیل می یابد . لذا تغییر فرکانس با تغییر ولتاژ تغذیه همراه است به گونه ای که شار در موتور ثابت باقی بماند. افزایش فرکانس به بیش از فرکانس اصلی در ولتاژ ثابت انجام می شود .
3- در گشتاور بار مشخص , سرعت موتور با افزایش مقاومت رتور کاهش مییابد . ولی سرعت بی باری موتور از تغییرات مقاومت رتور تاثیر نمی پذیرد . با کاهش سرعت روتور راندمان موتور و لتفاتت مسی رتور به ترتیب کاهش و افزایش می یابند . لذا روش کنترل مقاومت روتور همانند روش تغییر ولتاژ تغذیه موتور از نقطه نظر تلفات روش غیر مفیدی می باشد با اینحال سبت به روش کنترل تغذیه مزایای دارد . از جمه ایجاد گشتاور ثابت و نسبت گشتاور به جریان بالا را می توان نام برد . کنترل مقاومت رتور با استفاده از یک پل دیودی و یک برشگر پیاده سازی می شود .
4- فرض می کنیم ولتاژ تزریق شده در فاز رتور باشد . حالت بی باری ایده آل را در نظر می گیریم که در آن جریان I بایستی صفر باشد . اگر V جود نداشته باشد جریان I در صورتی صفر است که موتور در سرعت سنکرون قرار داشته باشد . سرعت موتور در بی باری تا تغییر ولتاژ V از صفر تا E/AT1 به ترتیب از سرعت سنکرون تا سکون تغییر می نماید . همچنین اگر V معکوس شود S منفی بوده و در نتیجه سرعت بی باری می تواند از سرعت سنکرون نیز بالاتر رود . در این شرایط سرعت نسبی بین میدان گردان استاتور و میدان گردان روتور نسبت به حالت موتوری در زیر سرعت سنکرون معکوس می باشند . نتیجتاً جهت و توالی ولتاژ القایی رتور معکوس می شود . بنابراین برای کار در بالاتر از سرعت سنکرون هم پلاریته و هم توالی فاز ولتاژ تزریق شده به رتور بایستی عوض شوند . همچنین با تغییر شرعت , فرکانس ولتاژ اتلقایی رتور نیز عوض می شود . لذا ولتاژ تزریق شده به روتور بایستی فرکانس ولتاژ القایی استاتور را دنبال نماید.
کنترل با کنترل کننده های ولتاژ AC تغییرات ولتاژ تغذیه توسط کنترل کننده ولتاژ AC بدست می آید . لازم به یادآوری است که این کنترل کننده از یکی منبع AC ثابت یک ولتاژ AC متغییر فرکانس ثابت ایجاد می کند . با اینجال در این تبدیل ضریب قدرت کوچک است و مقدار قابل ملاحظه ای از هارمونیک ها نیز در ولتاژ خروجی کنترل کننده ایجاد می شود . با کاهش ولتاژ خروجی , ضریب قدرت کاهش و محتویات هارمونیکی افزایش می یابند . افزایش هارمونیک هات باعث افزایش تلفات و افت ظرفیت موتور میشوند . گشتاور موتور که در ولتاژهای پایین کوچک است کاهش بیشتری می یابد .
موتورهایی القایی که با کنترل کننده های ولتاژ AC کنترل می شوند در بارهای پنکه ای پمپ ا و جرثقیل ها بکار گرفته می شوند . از کنترل کننده های ولتاژ AC در راه اندازی موتورهای القایی نیز استفاده می شود . بدلیل کنترل غیر پله ای ولتاژ موتور و انعطاف پذیری کنترل ناشی از پایین بودنقدرت مدار کنترلی کنترل کننده های ولتاژ AC در راه اندازی مزایای بیشتری نسبت به روشهای راه اندازی مرسوم همچون راه اندازی با اتوترانسفورمر , راه اندازی با کلیه ستاره ـ مثلث و غیره دارند . بری از مزایا عبارتند از : شتاب گیری و کاهش سرعت یکنواخت سادگی در پیاده سازی کنترل جریان , حفاظت آسان در مقابل تک فاز کار کردن یا کار بصورت نامتقارن , نیاز به نگهداری کمتر در کاربردهایی که راه اندازی و توقف مکرر خودکار دارند عدم حضور جریان های هجومی که در زمان قطع و وصل ولتاژ خط در اتوترانسفورماتور و راه اندازی ستاره ـ مثلث وجود دارند . هنگامیکه شرایط کاری مناسب هستند. در راه اندازی با کنترلب کننده های ولتاژی AC صرفه جویی انرژی هم وجود دارد چونکه موتور را می توان با ولتاژ بهینه تغذیه نمود. در چنـــین کاربــردهایی کنترل ولتاژ برای کاهش تلفات است نه برای کنترل سرعت. صرفه جویی در انرژی به سه عامل بستگی دارد : بارگذاری موتور , دامنه ولتاژ اعمال شده و کیفیت ساختمانی موتور صرفه جویی در انرژی در حالت موتورهای تک فاز بیش از موتورهای سه فاز
محرکه های موتور القایی کنترل شده با فرکانس :
در بــــخش هــای قبل دریافتیم که با کنترل فرکانس موتورای القایی قفس سنجابی مشخصه های ناسبی در شرایط دائم و گذرا بدست می آید . یک موتور القایی قفس سنجابی زیر نسبت به یک موتور DC دارد . از جمله قیمت ارزان , طول عمر زیاد ,. استحکام و قابلیت اطمینان بالا را می توان نام برد . ساختمان رتور موتور فوق سنجابی بگونه ای است که می توان آن را در سرعت , قدرت و ولتاژ بالاتر طراحی نود . با اینحال هزینه سیستم کنترل فرکانس متغییر به مراتب بیش از هزینه یکسو کننده قابل کنترل میباشد. در کاربردهای خاص که نیاز به تعمیر و نگهداری نبایستی وجود داشته باشد همچون کاربرد در تاسیسات زیر دریایی و زیر زمینی و همچنین کاربرد در محیط های قابل انفجار و آلوده نظیر معادن و صانیع شیمیایی استفاده از محرکه های القایی با فرکانس متغییر عمومیت پیدا کردن است . در این بخش محرکه های فرکانی متغییر مورد بررسی قرار می گیرند که در آنها از مبدلهای نیمه هادی قدرت استفاده می شود . این مبدلها به 3 دسته زیر تقیبم بندی می شوند .
1- اینورتر منبع ولتاژ (VSI)
2- اینوتر منبع جریان (CSI)
3- سیکلوکنوتر
اینورترها DC را به AC با فرکانس متغییر تبدیل می کند . اگر خروجی AC اینورتر بصورت یک منبع ولتاژ AC عمل کند به گروه اینورتر منبع ولتاژ تعلق دارد . به همین صورت اگر خروجی AC اینورتر بصورت یک مبع جریان AC عمل کند . آن را اینورتر منبع جریان می نمایند . سیلکوکنورترها از منبع ولتاژ AC ثابت می تواند مشخه ای منبع AC فرکانس متغییر ولتاژ یا جریان را ایجاد نمایند .
1- به دلیل کوچک بودن امپدانس داخلی , ولتار خروجی یک اینورتر منبع ولتاژ با تغییرات بار ثابت باقی می ماند بنابراین برای محرکه های تک موتوره و چند موتوره مناسب هستند . با اتصال کوتاه شدن پایانه های خروجی جریان به سرعت افزایش می باید . زیرا امپدانس داخلی و ثابت زمانی آن کوچک هستند. بنابراین حفاظت در برابر اتصال کوتاه توسط سیستم کنترل جریان میسر سیم و بایستی با فیوزهای سریع حفاظت انجام شود . برای کنترل سرعت موتور القایی تغییرات همزمان ولتاژ و فرکانس لازم است فرکانی ولتاژ خروجی اینورتر با تغییر پریود زمانی یکی سیکل کنترل می شود . اینکار بسادگی و با تغییر دادن هادی زمانی سیگنالهای کنترلی انجام می شود و مولفه ای اصلی ولتاژ خروجی این اینورتر ثابت است . مولفه های اصلی ولتاژ خروجی یک اینورتر را می توان با تغییر ولتاژ ورودی کنترل نمود . هنگامیکه اینورتر با یکی منبع ولتاژ DC تغذیه می شوند . وغیره ولتاژ DC ورودی به اینورتر با قرار دادن یکی برشگر بین منبع DC و اینورتر تغییر داده می شود . بسته به نوع کاربرد از برش افزاینده و یا کاهنده استفاده می شد . برای حذف اعواجاج ولتاژ DC خرویج برشگر از یکی فیلتر LC بین برگشر و اینورتر استفاده میشود . فیلتر مزبور از تداخل آثار ولتاژ خروجی برشگر به وردی اینورتر و جریان وردی اینورتر به خروجی برگشت جلوگیری بعمل آید.
2- به دلیل بزرگ بودن امپدانس داخلی یکی اینورر منبع جریان , تغــییر ولتاژ پایانه های اینورتر جریان در اثر تغییر بار بسیار بزرگ اس و بنابراین اگر در حالت چند ماشینه از اینورتر جریان استفاده شود . تغییر بار هر یکی از موتورها بر کار سایر موتورها اثر دارد . پی در کاربرد چند ماشینه از اینورتر منبع جریان استفاده نمی شود . خروجی اینورتر منبع جریان مستقل از امپدانس بار است . حفاظت ذاتی در مقابل اتصال کوتاه پایانه هایش دارد. بعلت وجود اندوکتانس پراکندگی ولتاژ لحظه ای بر روی ولتاژ فاز ایجاد می شود . اضافه ولتاژ فوق در هر لحظه که جریان فاز تغییر می نماید . ایجاد می شود. این امر باعث می شود که ولتاژ نامی قطعه افزایش یاید . مجموعه های خازنی مسیری برای عبور در جریان در لحظه اول تغییرات ایجاد می نمایند . این امر سبب می شود که اضافه ولتاژ تقلیل یابد . اضافه ولتاژ فوق با افزایش اندوکتانس پراکندگی موتور افزایش می یابد . لذا جهت محدود نمودن . اضافه ولتاژ لحظه ای لازم است از خازن با ظـــــرفیت بــزرگتری استفاده شود . در نتیجه زمان لازم جهت یابی جریان از یک فاز به فاز دیگر افزایش می یابد . همچنین محدود عملکرد فرکانس اینورتر تقلیل می باید. لذا لازم است از موتور با اندوکتانس پراکندگی کوچک استفاده شود . باید توجه داشت که نیاز فوق بر خلاف نیاز مورد نظر در اینورتر ولتاژ می باشد . در آنجا برای کاهش آثار هارمونیک ها و فیلتر نمودن آنها , موتورهای بار راکتانس پراکندگی بالاتر ترجیح داده میشوند. اصلی ترین مشکل یکسوکننده ها منبع جریان ضریب قدرت کم آن در ولتاژ های کم اتصال DC می باشد . مشکل فوق با استفاده از روشهایی نظیر یکسو کننده با هرزه گرد کنترل شده یا مدولاسیون پهنای پالس برطرف می شود .
3- مبدل هایی دوبل به صورت همزمان و یا غیر مزمان قابل کنترل می باشند . یکسوکننده های 1 و 2 بصورت یکسوکننده های تمام کنترل شده و نیمه کنترل شده متصل می شوند . مبدل 2 امکان عملکرد در چهار ربع را دارد . این عمل با ولتاژ و فرکانس مختلف انجام می شود. جریان مثبت با توسط یکسو کننده 1 تغذیه می گردد . جریان منفی باز نیر توسط یکسو کننده 2 تغذیه میشود . در شرایطی که یکسو کننده ها بصورت غیر همزمان کنترل شوند . فقط یکی از یکسو کننده ها در هر لحظه هدایت جریان را به عهده دارد . یکسو کننده 1 برای جریان مثبت کنو یکسو کننده 2 برای جریان منفی هدایتی جریان بار را به عهده می گیرند . یکسوکننده 1 در شرایطی که ولتاژ مثبت با شد به صورت یکسو کننده و در شرایطی که ولتاژ منفی است به صورت اینورتری عمل می نماید. عکس شرایط فوق برای یکسو کننده 2 صادق است. در شرایطی که از کنتترل همزمان استفاده می شود . هر دو مبدل بطور همزمان در مدار قرار دارند. زمانی که جریان AC گردشی در نتیجه اختلاف لحظه ای ولتاژ پایان های یکسو کننده های ایجاد می گردد . از اندوکتانسهای L2 , L1 برای محدود نمودن . جریان گردشی AC استفاده می شود . مبدل دوبل فوق همانند یک سیلکوکنورتر تک فاز عمل می کند . سیستم فوق این امکان را فراهم می سازد که از منبع ولتاژ فرکانی ثابت منبع ولتاژ فرکانس متغیر بدست می آید . سیلکوکنورتر سه فاز از سه سیلکوکنورتر تک فاز که سیگنالهای مرجع آن 120 درجه اختلاف فاز دارند بدست می آید . برای جلوگیری از واکنش بین دو مبدیل هر مبدل با سیم بندی مشتق از یکی ترانسفورماتور سه فار تغذیه می شود . فرکانس ولتاژ خروجی سیلکو کنوتر از فرکانس تغذیه کمتر است با هر افزایش در فرکانس بار , هارمونیک های جریان و ولتاژ افزایش می یابند . متناسب با اینکه بار تا چه حد می توان هارمونیک های جریان را تحمل کند . حداکثر فرکانس خروجی محدود می گردد . یک سیلکو کنورتر سه فاز 36 عدد تریستور نیاز دارد. که تعداد تریستورها را میتوان به عدد 1 نیز تقلیل محرکه های موتور القایی کنترل شده با سیلکوکنورتر در محرکه های قدرت بالا با محدوده سرعت پایین , همچون صنایع نورد فلزات و در ماشینهای حفاری در معادن استفاده می شود .
باردهی ترانسفورماتور
ابتدا باید گفته شود که مطلوب ترین شرایط برای کار یک ترانس این است که با تمام ظرفیت تحت سرویس بوده و ایزولاسیون آن نیز نباید از حد مجاز تجاوز ننمایند.
اضافه بار مجاز
عملا منحنی مصرف بار الکتریکی که در طول شبانه روز غیر یکنواخت بوده و در فاصله زمانی مشخصی مقدار ماکزیمم خود را خواهد داشت .
از طرف دیگر با توجه به این حقیقت که عمر مفید هر نوع از عایق های الکتریکی پس از جذب میزان معینی حرارت به اتمام می رسد , می توان در ماقع پیک بار , ترانس را به صورتی تحت اضافه بار قرار داد که اضافه فساد عایق در این پریود درست به اندازه کمبود فساد آن در زمان مینیمم بار باشد .
به این ترتیب عایق عمر مفید معین شده خویش را حفظ نموده و دچار خرابی زودرس نخواهد گردید . این اضافه بار که معمولا به صورت درصدی از بار نامی بیان می شود , بستگی به میزان غیر یکنواختی منحنی بار , روش خنک کردن ترانس و ضریب انتقال حرارت آن دارد . اضافه بار مجاز برای زمان های کوتاه برای ترانس به شرح زیر می باشد .
1) ترانسهای روغنی
30
45
60
75
100
اضافه بار مجاز (درصد)
120
80
45
20
10
زمان اضافه بار (دقیقه)
2) ترانسهای خشک
20
30
40
50
60
اضافه بار مجاز (درصد)
60
45
32
18
5
زمان اضافه بار (دقیقه)
در شرایط اضطراری ممکن است ترانسها را حتی روزانه 6 ساعت و حداکثر تا 5 روز متوالی تحت 40 درصد 40 درصد اضافه بار قرار داد. البته در این صورت بار میانگین ترانس در طول 24 ساعت نباید از 93/0 بارنامی تجاوز نماید.
شرایط پار الل کردن و باردهی اقتصادی برای ترانسفورماتورها
وقتی که ترمینالهای مشابه اولیه و ثانویه دوترانس (یا بیشتر ) به یکدیگر متصل شوند گفته می شود که آنها بصورت پارالل کارمی کنند.
این عمل معمولاً ا زطریق باسهای ویژه و یا مستقیماً روی شبکه انجام می گیرد. برای پارالل کردن چند ترانس شرایط زیر باید برقرار باشد.
1) ترانس های روغنی
2) ترانس های خشک
در شرایط اضطراری ممکن است ترانس ها را حتی روزانه 6 ساعت و حداکثر تا 5 روز متوالی تحت 40 درصد اضافه بار قرار دارد . البته در این صورت بار میانگین ترانس در طول 24 ساعت نباید از 93/0 بار نامی تجاوز نماید .
شرایط پارالل کردن و باردهی اقتصادی برای ترانسفورماتورها
وقتی که ترمینال های مشابه اولیه و ثانویه دو ترانس (یا بیشتر) به یک دیگر متصل شوند گفته می شود که آن ها به صورت پارالل کار می کنند .
این عمل معمولا از طریق باس های ویژه و یا مستقیما روی شبکه انجام می گیرد .برای پارالل کردن چند ترانس باید برقرار باشد :
1) کلیه ترانس ها باید دارای گروه های اتصال یکسان باشند.
2) ولتاژ نامی ونسبت تبدیل ترانس ها باید یکسان باشد .
3) ولتاژ اتصال کوتاه (امپدانس اتصال کوتاه ) ترانسفورماتورها باید برابر باشند .
اگر در یک پست برق چند ترانسفورماتور به طور پارالل وجود داشته باشد , شرایط کار اقتصادی ایجاد می نماید که بر حسب مقدار بار مصرفی , تعداد مشخصی از ترانسفورماتورها در مدار قرار گیرند .
این تعداد بر این اساس انتخاب می شوند که تلفات انرژی به حداقل ممکن برسد و البته مناسب ترین وضعیت حالتی است که در این انتخاب علاوه بر تلفات در خود ترانسفورماتورها تلفات بار اکتیو و راکتیو در شبکه نیز مد نظر قرار گیرد .
ارقام 0 تا 11 مبین گروه اتصال بوده و مشخص می کند که بردار ولتاژ یک فاز (در اتصال ستاره ) در فشار قوی چند برابر 30 درجه نسبت به ولتاژ همان فاز (دراتصال ستاره) در طرف فشار ضعیف و در جهت مثبت متلتاتی اختلاف فاز دارد .
اتصال ترانسفورماتورها با گروه های اتصال غیر مشابه به همدیگر به هیچ وجه امکان پذیر نمی باشد . برای درک حادثه های که ممکن است در اثر اتصال چنین ترانسفورماتورهایی پیش آید کافی است متذکر شود که اگر بردارهای ثانویه دو ترانس فقط 30 درجه اختلاف فاز داشته باشند , جریان متعادل کننده از 3 تا 5 برابر جریان نامی تجاوز خواهد نمود .
همچنین اختلاف کوچکی در نسبت تبدیل دو ترانس پارالل شونده , منجر به جریان متعادل کننده نسبتا زیادی شده و ترانسفورماتوری که دارای ولتاژ ثانویه بیشتر است بار زیادتری به خود جذب می نماید .اگر چند ترانس با امپدانس اتصال کوتاه هایی مختلف به صورت پارالل بسته شوند توزیع بار بین آن ها به طور مستقیم با ظرفیت نامی و به طور معکوس متناسب با امپدانس اتصال کوتاه خواهد بود .
نسبت بین ظرفیت نامی ترانس هایی که قرار است به طور پارالل کار کنند نباید از 3:1 تجاوز نماید , زیرا اگر چه امپدانس اتصال کوتاه دو ترانس تیز مساوی باشند , مولفه های اکتیو و راکتیو آندو معمولا با هم اخلتاف داشته و این اختلاف در ترانسفورماتورهای با ظرفیت پایین بارزتر می باشد .
حال چنانچه امپدانس های اتصال کوتاه نیز بیش از 10 درصد تفاوت داشته باشد , اختلاف بین مولفه های فوق شدید تر بوده و نتیجتا کار پارالل کردن آن ها به خاطر وجود جریان متعادل کننده با اشکال مواجه خواهد شد .پس از اتمام عملیات نصب و یا تعمیرات اساسی معمولا ترانسفورماتورها مورد تست های مخصوص قرار داده و بعد از اطمینان از حصول شرایط کار پارالل تحت سرویس قرارمی دهند .
تنظیم ولتاژ
تنظیم ولتاژ در شبکه برق به کمک تپ چنجر و یا با کم یا زیاد کردن تعداد دورهای سیم پیچ ترانسفورماتور صورت می گیرد . اغلب ترانسفورماتورهای اصلی شبکه برق مجهز به تپ چنجر چنجر هایی هستند که زیر بار کار کرده و در طرف فشار قوی ترانس نصب می شوند . این تپ چنجرها در واقع وقتی که ولتاژ فشار قوی از حد مجاز انحراف پیدا کند , با تغییر دادن نسبت ولتاژ طرف فشار ضعیف را در مقدار نامی تثبیت می نمایند . از نطر نوع تپ چنجرها را به دو دسته می توان تقسیم نمود . در نوع اول نسبت تبدیل ترانسفورماتور در حالت قطع کامل از شبکه و به کمک چند حلقه سیم پیچ اضافی تغییر داده شده ودر نوع دوم تغییر نسبت تبدیل در حالت اتصال کامل به شبکه و زیر بار انجام می گیرد .
مثلا در ترانسفورماتورهای کاهنده توزیع برق , چهار تپ وجود دارد که به کمک آن ها می توان نسبت تبدیل ترانسفورماتور را در حالت بی باری و به میزان 5+ , 5/2 + , 5/2 _ , و 5_ درصد مقدار نامی تغییر داد .
تپ چنجر ها معمولا در مخزن جداگانه ای در مجاورت تانک ترانس (به طوری که از بیرون به صورت یکپارچه دیده می شوند) نصب شده و محور عمل کننده آن ها در بالای ترانس قرار دارد . طبیعی است که در لحظات تغییر یک تپ به تپ دیگر مدار ترانسفورماتور قطع خواهد شد . برای تثبیت ولتاژ وقتی که ولتاژ در ترمینال های طرف فشار ضعیف افزایش می یابد , باید تعداد دور سیم پیچ فشار قوی را به میزان مناسب کاهش داده و برعکس اگر ولتاژ در طرف فشار ضعیف کاهش یابد باید تعداد دور در طرف فشار قوی را به میزان مناسب افزایش داد .
بیشترین حوادثی که برای یک ترانس پیش می آید ناشی از عیوبی است که در سیتم تپ چنجر آن بروز می نماید . این عیوب عمدتا عبارتند از :
گرم کردن و سوختن کنتاکت ها , جام کردن محور تپ چنجر , شل و لق شدن اتصالات مکانیکی و ضعیف شدن کنتاکت های الکتریکی .
به همین جهت مکانیزم تپ چنجر باید به طور مرتب و دوره ای تحت مراقبت و بازرسی قرار گیرد . در تپ چنجرهای زیر بار معمولا با استفاده از یک زیر بار معمولا با استفاده از یک تپ کمکی مانع قطع مدار جریان در پریود تعویض تپ می شوند که این عمل که به کمک سوئیچ مخصوصی در داخل مخزن مخصوص تپ چنجر صورت می گیرد .
مکانیزم تپ چنجر زیر بار ممکن است از طریق تابلوی کنترل مربوطه فرمان داده شده ویا بطور اتوماتیک وتحت کنترل رله های ولتاژی عمل نماید .
مشخصات فنی و ویژگی های ترانسفورماتورهایی که عمومادر شبکه های توزیع و انتقال برق به کار برده می شوند در استانداردهای معتبر بین المللی بیان شده است .
تپ چنجرهای زیر بار در بعضی از ترانس ها مجهز به سیستمهای کنترل اتوماتیک بوده و ولتاژ شبکه را بر حسب تغییرات بار تا 15=درصد تنظیم می نماید .
اکر سیستم کنترل اتوماتیک یک تپ چنجر معیوب شود باید ترانس را کلا از مدارخارج کرده و تحت تعمیر قرار داد.
تپ چنجر زی بار باید اصولا دارای فرمان از راه دور بوده و هیچگونه تغییر تپ دستی برای ترانسفورماتورهای مجهز به سیستم تپ چنجر زیر بار مجاز دانسته نشده است.
امروزه رگولاتورهای ولتاژ کریستالی به جای رگولا تورهای الکترومکانیکی کاربرد وسیعی جهت تنظیم ولتاژ در شبکه ها ی برق پیدا کرده اند.
این رگولاتورهاکه مستقما به تپ چنجر فرمان می دهند معمولا دارای سیستم حفاظت و سینگال ویژه ای بوده و در صورت لزوم می توان مجموعه رگولاتور را از مدار خارج نمود .
ضمنا تنظیم نقطه کار این رگولاتورها نیز از راه دور مسیر می باشد .تپ چنجرهاغالبا مجهز به کنتورشمارنده هستند که تعداد دفعات عملکرد ان رانشان می دهدو طبق دستور العمل کارخانه برحسب مورد پس ازهر
10000تا20000کلید زنی ,کنتاکتهای تپ چنجر باید بازرسی شده وعیوب احتمالی آن بر طرف گردد
برای انجام این عمل باید روغن مخزن تپ چنجر را تخیله نمود ,البته علاوه بر این تپ چنجر های زیر باید حداقل سال یک بار مورد بازرسی وتست قرار گرفته و قسمتهای گردنده ومحلهای که تحت اصطکاک قراردارند نیز هر شش ماه یکبار روغن کاری شوند.اگر چند ترانس که به صورت پارالل کار می کنند دارای رگولاتورهای اتوماتیک باشند , باید توجه نمود که عملکرد رگولاتورها باید کاملا همزمان ومشابه باشند واگر رگولاتور اتوماتیک وجود نداشته باشد ,برای به حداقل رساندن جریان متعادل کننده ,تغییر تپ باید قدم به قدم صورت گرفته واختلاف بیش از یک تپ بین دو ترانس ایجاد نگردد.
تنظیم ولتاژ ممکن است توسط اتوترانسفورماتورها و یا بوستر ترانسفورماتورها نیز صورت گیرد . بوستر ترانسفورماتور از یک و یا به ترانس سری و یک ترانس تغذیه کننده ان تشکیل می شود بطوریکه سیم پیچ ثانویه ترانس با سیم پیچ ترانسفورماتورهای که لازم است ولتاژ آن تنظیم شود بطور سری بسته شده و اولیه ان به ثانویه ترانس تغذیه کوپل می شود
مراقبت و نگهداری از ترانسهای قدرت
زمین زیر ترانس های روغنی باید به طرف چاهک مخصوص روغن شیببندی شده و روی ان رابا قلوه سنگ تمیز به ارتفاع حداقل 25سانتیمتر پر شود .چاهک روغن که لوله تخلیه نیز برای ان پیش بینی می شود معمولا در کنار دیوار ساخته شده وباید به طور مرتب توسط اپراتور بازدید شود .
باید مراقبت نمود که روغن قابل اشتغال در ترنچهای کابل و یا منولهای دیگر موجود در محوطه نفوذ ننموده وضمنا در اتاق ترانس باید شن خشک در جبعه های مخصوص و همچنین لوازم دیگر اطفا حریق وجود داشته باشد .
یک ترانس رابعد از اتمام عملیات نصب ,باید تحت تست ها و بررسیهای لازم قرارداده وپس از ان در سرویس گذاشت هدف از این تست ها عبارت از حصول اطمینان از عملکرد صحیح رله ها ومدارات حفاظتی اینتر لاکهای دژنکتورها ,چک کردن کلیه ترمومترها , چک کردن سطح روغن در کنسرواتور و اطمینان از بر قرار بودن ارتباط ان با تانک ترانس .
قبل از اتصال ازمایشی ترانس که در ان فقط دژنگتورهای طرف اولیه بسته می شود, اپراتور باید کلیه شیر های روغن رادیاتورها و کنسرواتور را بازدید کرده و از عدم وجود هوا در رله بوخهلتز اطمینان حا صل نماید .
همچنین قسمتهای مختلف ترانس وتجهیزات جانبی انرا که در فضای ازاد قرار دارند تا سر دژنکتورها باز بینی کرده ودقت نماید که روی ترانسفورماتور اشیا اضافی وجود نداشته باشد ,تانک ترانس به طور محکم وموثر به زمین وصل شده باشد ,روغنی از ترانس نشت ننماید واتصالات برقگیرهای حفاظتی که معمولا در جلوی ترانس وروی خط فشار قوی نصب میشوند برقرارباشد .
در این حالت پس از اطمینان از سلامت ودرمدار بودن سیستمهای حفاظتی می توان دژنگتورها راوصل نمود .البته در اینجا یاد آور می شود که وصل ترانس با تاخیری کمتر از 12ساعت پس از پر نمودن تانک از روغن مجاز دانسته نشده است .برای وصل ازمایشی ترانس باید مدارهای رله بوخهلتز و رله جریان زیادی برای قطع انی و بدون تاخیر اماده می شود ,ولی می توان ترانس را به سیستمهای خنک کننده نیز وصل نمود ,در این صورت باید توجه داشت که در جریان کار ,درجه حرارت روغن درقسمت بالای تانک از75 درجه سانتیگراد تجاوز ننماید (به علت گرمای ناشی ازتلفات اهن).
برای کنترل وضعیت ترانس در شرایط بی باری باید حداقل 30 دقیقه آن در حالت وصل آزمایشی نگاه داشت .اگر در خلال این مدت نتایج ازمایشات قانع کننده بود می توان بلا فاصله دژنگتورهای طرف ثانویه ترانس را زیر بار قرار داد.
درترانسفوماتورهایی که سطح روغن کنسراتور توسط لوله شیشه ای آب نما کنترل می شود باید دقت نمود که دو سر لوله مزبور مسدود نباشد زیرا در صورت مسدود بودن این لوله سطح روغن به صورت صحیح نمایش داده نمی شود .
در ذیل ترانسفورماتورهای تحت سرویس را بر حسب شرایط کاری مختلف طبقه بندی نموده ,نحوه رسیدگی و بازرسیهای روتین آنها به شرح زیر می باشد .
1)در نیروگاههاو پستهایی که توسط تشکلات پرسنلی شیفت یا مقیم محل کار کنترل ونگهداری می شوند , ترانسفرماتورهای اصلی و ترانسفورماتورهای مصرف داحلی (اعم از اصلی و رزرو) باید بطور روزانه وبقیه ترانسفورماتورها هفته ای یک مرتبه مورد بازرسی قرارگیرند.
2)در نیرگاهها و پستهایی که توسط اکیپهای سیار نگه داری می شوند ,ترانسفورماتورها باید حداقل ماهی یکبار مورد بازرسی قرار گیرند.
3)در پستهای کوچک وکم ظرفیت ترانسها حداقل هرشش ماه یکبار باید بررسی شوند .سیستمهای خنک کننده ترانسفورماتورها باید از نقطه نظر عملکردصحیح پمپها و فن ها کنترل شوند برای انجام این عمل اپراتورباید دمای روغن ترانسفورماتور وهمچنین دمای روغن در ورودی وخروجی کولر (در صورتکه ترانس مجهز به کولر ابی جهت خنک کردن باشد )رایادداشت نماید.
هرگاه ترانسی توسط رله های حفاظت داخلی قطع شود (رله بوخهلتز ,رله دیفرانسیل ,رله جریان زیاد ) ابتدا اپراتور باید وضع ظاهری ان و تجهیزات جنبی مربوطه به جهت پی بردن به علت حادثه مورد بازرسی قراردهد.
مثلا اگر وجود گاز در رله بوخهلتز مشاهده شود ,نمونه ان باید جهت تست به آزمایشگاه ارسال گردد.
زیرا بعضی مواقع ممکن است در خلال کار ترانس حبابهای هوای درون روغن باعث عملکرد نابجای رله بوخلتز گردد.
اگر گاز درون رله بخهلتز از روغن سوخته متصاعد شده باشد مبین وجود حادثه در داخل ترانس بوده که در این صورت بلا فاصله باید ترتنس راجهت تعمیرات از مدار ایزوله نمود .تعمیرات دورهای روی ترانسهایی که قطع آنها مستلزم خارج شدن ترانس اصلی از مدار است هر دو سال یک مرتبه وبقیه ترانسهاهر چهار سال یک مرتبه صورت میگیرد .
ضمنا ترانسفورماتورهایی که در شرایط محیطی با آلودگی بسیار بالا کار می کنند باید طبق دستور العملهای ویژه مربوط به محل ,مورد تعمیرات دورهای قرارگیرند. خشک کردن ترانسفورماتورها اولا : اگر سیم پیچ یا ایزولاسیون ترانس به طور جزئی یا کلی تعمیر شده باشد , به نیاز به اندازه گیری به خصوصی قطعا باید آن را تحت عملیات رطوبت زدائی قرار داد .
ثانیا : اگر در حین انجام تعمیرات اساسی شرایط کار با ترانس ویژه ترانس دقیقا رعایت شده و هسته آن بیش از حد مجاز خارج از روغن نگهداری نشود پس از انجام تعمیرات تقریبا می توان مطمئن بود که ترانس نیازی به خشک کردن ندارد ولیکن در حالت کلی باید وضعیت ایزولاسیون سیم پیچ را قبل و بعد از تعمیرات اساسی , طبق قواعد استاندارد شده مورد تست و ارزیابی قرار داده و در صورت نیاز اقدام به خشک سازی آن نمود .
البته اگر پارامترهای عایق بدون روغن قبل و بعد از تعمیرات اساسی مقایسه شوند باید اثر روغن را در تغییر کمیت ها بر طبق استانداردهایی که در این زمینه وجود دارد مورد توجه قرار دارد .
اگر در آزمایشاتی که در خلال تعمیرات اساسی هسته ترانس در مدت زمانی بیش از آنچه که در مدارک فنی مربوطه معین شده است در هوای آزاد قرار گیرد ترانس را باید جهت عملیات خشک سازی مورد تست قرار داد .
ترانس ها را به یکی از روش های زیر خشک می نمایند :
1- خشک کردن ترانس در خود تانک و به کمک حرارت ناشی از تلفات مس و یا تلفات آهن در شرایط خلا و یا بدون آن .
2- خشک کردن در داخل خود تانک و به کمک هوای گرم وخشک که توسط یک منبع خارجی تولید شود .
3- خشک کردن به کمک حرارت ناشی از یک منبع خارجی و بدون شرایط خلا .
بررسی وضعیت عایق سیم پیچ ها از نظر میزان رطوبت اصولا باید در شرایط تانک بدون روغن صورت گرفته و اندازه گیری پارامترهای عایق در خلال علیات خشک سازی نیز باید به طور مرتب تا زمانیکه این پارامترها به زمانیکه این پارامترها به میزان ثابت خود برسند ادامه داده شود.
دژنگتورها
دژنگتورها ی فشار قوی بدون شک از مهمترین تجهزات کلید خانه ها به شمار می روند که نقش انها قطع و وصلمدار در وضیعت عادی و هم چنین در تحت شرایط اضافه بار غیر مجاز ,اتصال کوتاه و یا هر نوع حادثه غیر نرمال دیگر است .
وقتی که یک دژنگتور قطع می شود تا مدتی ارتباط مدار در دهانه کنتاکت های ان به وسیله قوس الکتریکی برقرار می ماند . به همبن جهت دژنگتور باید مجهز به لوازمی برای کنترل و قطع قوس و پیشگیری از بازگشت مجدد آن باشد .
در دژنگتورهای روغنی به علت خشک شدن قوس و همچنین افزایش فشاری که در اثر تجزیه روغن پیش می آید شرایط لازم برای بقا قوس یه میزان زیادی تضعیف شده و از آن طرف به دلیل افزایش فاصله کنتاکت ها , اطفا جرقه در پریودهای بعد از گذشتن منحنی جریان از اولین نقطه صفر , براحتی میسر می شود . یادآور می شود که روغنی که در اغلب دژنگتورهای روغنی مورد استفاده واقع می شود همان روغن ترانس می باشد .
دژنگتورهای دیگری نیز وجود دارند که در آن ها از انواع گازها , افزایش طول قوس به روش الکترومغناطیسی یا لوازم دیگر جهت تسهیل و تسریع امر اطفا استفاده می شود .
انواع مختلف دژنگتورها را می توان به شرح زیر دسته بندی نمود :
الف ) دژنگتورهای پر روغن که در آن ها روغن علاوه بر خاموش نمودن جرقه , نقش ایزولاسیون هادیهای جریان را نیز بر عهده دارد .
ب ) دژنگتور های کم روغن که در آن ها روغن فقط به عنوان خاموش کننده جرقه به کار رفته و ایزولاسیون توسط عایق های جامد صورت می گیرد .
ج ) دژنگتورهایی که از گاز جامد (ماده جامدی که به راحتی تبدیل به گاز می شود) استفاده می نمایتد .
در این دژنگتور در اثر درجه حرارت بسیار بالای قوس , ماده جامدی به گاز تبدیل شده و با شدت از محفظه کلید خارج می شود که در اثر وزش آن قوس نیز خاموش می گردد .
د ) دژنگتورهای هوای فشرده که در ان ها قوس الکتریکی به کمک هوای تحت فشاری که از کمپرسور مخصوص کلید خارج می شود خاموش می گردد .
ه ) دژنگتورهای گازی که در ان ها از گازهای صد در صد خنثی نظیر sf6 استفاده می شود .
و ) دژنگتورهای با اطفا قوس الکترومغتاطیسی که در آن ها با استفاده از میدان مغناطیسی , قوس را به داخل محفظه مشبکی که از مواد نسوز تشکیل شده است کشیده و منقطع می نماید .
ز ) دژنگتورهایی که با ایجاد خلا قوس را خاموش می نمایند .
تست همزمانی فازها در دژنگتور
اگر کنتاکت های هر سه فاز یک دژنگتور به طور همزمان بسته و باز نشوند , عملکرد کلید مورد مخاطره واقعی قرار گرفته و ممکن است منجر به سوختن کنتاکت ها شود , لذا برای پیشگیری از این حادثه باید کنتاکت ها را طوری تنظیم نمائیم که در زمان وصل کلید کاملا به طور همزمان بسته شوند .
این عمل با تغییر میزان درگیری در محل اتصال صورت می گیرد . البته هرچه میزان درگیری کنتاکتها کوچکتر باشد تفاوت کمتری در زمان وصل فازها اجازه داده می شود . مثلا برای کنتاکتی با طول درگیری 15 تا 20 میلیمتر , تاخیر در وصل بیش از یک میلیمتر در بین کنتاکت ها مجاز نمی باشد .
اندازه گیری زمان قطع و وصل کلید
کیفیت تنظیم مکانیزم های یک دژنگتور با اندازه گیری سرعت حرکت کلید و یا زمان لازم برای قطع و وصل ان ارزیابی می شود . به طور معمول سرعت قطع و وصل کلید در خلال تعمیرات دورهای وکنترل شده وبا توجه به وضیعت فن باز کننده کلید و همچنین لوازم دیگر مکانیزم قطع و وصل ,علل تاخیر را شناسایی کرده و برطرف
می سازند.
اندازه گیریهای مورد نیاز در این زمینه به کمک ویبراتور , میلی ثانیه شمار و یا اسیلوگراف انجام می پذیرد .
اگر مدار وصل دژنگتور عمل نکند , علل احتمالی آن ممکن است :
الف ) سوختن سیم پیچ سولنوئید وصل , سوختن سیم پیچ یکی از کنتاکت های موثر در این مدار و یا سوختن یک فیوز باشد .
ب ) ممکن است علت عمل نکردن مدار وصل , به وجود آمدن قطعی در مدار آن , جام کردن محور یک سولنوئید , کاهش قدرت الکترومغناطیسی در جذب قطعات مربوطه , محکم و خشک شدن بیش از حد فنرها , ضعیف شدن کنتاکت های الکتریکی در مدارات مختلف و یا کاهش ولتاژ در باس های قطع و وصل کلید باشد .
اگر سرعت قطع یک دژنگتور روغنی از حد معمول خود افت پیدا کند دو علت می توان برای آن باز شناخت :
الف ) خارج شدن از تنظیم و یا خرابی سولنوئید و لوازم دیگری که خار قفل فنر را بیرون کشیده و آن را جهت قطع آزاد کلید رها می سازند .
ب ) کاهش ولتاژ عمل کننده در مورد فوق .
اگر یک دژنگتور روغنی فرمان قطع نگیرد علل احتمالی آن عبارتند از :
الف ) سوختن سیم پیچ سولنوئید قطع , وجو یک اینترلاک در مدار قطع , انحراف محوری بیش از اندازه در سیستم , قطع آزاد کلید و یا جام نمودن محور یک کویل به اندازه فرسودگی و خرابی آن .
ب ) خرابی یا ایجاد قطعی در مدار تغذیه باس بارهای جریان مستقیم نیروگاه یا پست که به علت تخلیه زیاد یا اتصال کوتاه پیش آمده باشد .
سکسیونرها
کلیدهای ایزولاتور یا سکسیونرها , قطع کننده هایی هستند که نقش آن ها جدا نمودن کامل , ایمن و قابل رویت تجهیزات مختلف از شبکه قدرت جهت انجام تعمیرات و یا بازرسی ها می باشد , علاوه بر این برای قطع و وصل ترانس ها یا خطوط انتقال برق در حالت بی باری نیز می توان از این کلید ها استفاده نمود .
سکسیونرها به انواع مختلف زیر دسته بندی می شوند :
الف ) سکسیونرهای چاقوئی که در شبکه های 6 تا 10 کیلو وات به کار می روند و در آن ها بازوهای کلید در یک جهت و حول یک محور افقی دوران نموده و مدار را قطع می نمایند .
ب) سکسیونرهای قیچی شکل که در آن ها بازوهای کلید در سطح افقی و از دو جهت حول محور ایزولاتور ستونی حرکت کرده و مدار را قطع می نمایند .
ج ) سکسیونرهایی که بازوهای آن مدار را حول یک محور افقی قطع کرده و در عین حال می توانند حول محور خود نیز حرکت نموده و به راحتی یخ موجود روی کلید را خرد نمایند که البته این ایزولاتور در مناطق سردسیر که یخبندان شدید به وجود می آید , مورد استفاده واقع می شود .
د ) سکسیونرهای ارت که جهت متصل نمودن خط به سیستم زمین پس از قطع آن توسط بازوهای اصلی به کار می رود .
در کلید خانه هایی که در فضای بسته قرار دارند , کلیدهای ایزولاتور معمولا به صورت عمودی نصب می شوند تا مکان کمتری را اشغال نمایند .
ضمنا بازو بسته نمودن این کلیدها ممکن است به صورت دستی , موتوری و یا به کمک هوای تحت فشار انجام پذیرد که البته موتوری آن جهت مدارهایی که جریان نامی آن ها 3000 آمپر به بالا است به کار می روند .
کلیدهای ایزولاتور اعم از قابل قطع زیر بار و غیر قابل قطع زیر بار حداقل سالی یک یا دو مرتبه و نیز پس از بروز حادثه اتصال کوتاه , باید بازرسی شده و در صورت لزوم تحت تعمیر قرار گیرند .
در خلال تعمیرات سطوح خارجی این کلیدها را باید با پارچه تمیز آغشته به گازوئیل رقیق , تمیز کرده و وضعیت کنتاکت ها را از نظر صاف بودن سطوح و استحکام کنترل نمود .
اگر در سطح کنتاکت اثر سوختگی ناشی از قوس الکتریکی مشاهده شود باید آن را تمیز کرده و یا تعویض نمود . گریس های کهنه باید به کمک نفت سفید پاک شده و به جای آن لایه جدیدی از گریس تازه استعمال شود .پیچ و مهره های شل و لق را باید محکم کرده و عملکرد کلید را با چند مرتبه باز و بسته کردن ان در شرایط بی برقی کنترل نمود .
برای تنظیم قسمت های مکانیکی کلیدهای ایزولاتور سه فاز باید توجه داشت که اختلاف طولی در لحظه بسته شدن فازها برای ولتاژ های 35 و 110 کیلو ولت به ترتیب نباید از 3 و 5 میلیمتر تجاوز نماید . برای تنظیم همزمانی فازها در کلیدهای ایزولاتور مخصوص فضای بسته , موقعیت تیغه های سه فاز را نسبت به یکدیگر تغییر داده و در کلیدهای ایزولاتور مخصوص فضای باز این تنظیم از طریق تغییر محل در قطعه انتهایی کنتاکت های ثابت صورت می گیرد .
کلید ایزولاتور از نظر سهولت و کیفیت درگیری تیغه های آن در داخل کنتاکت ثابت نیز باید کنترل شود . هنگام درگیری کامل کنتاکت ها در هم دیگر فاصله تیغه های کلید از خار استپ موجود در دهانه کنتاکت ثابت نباید کمتر از 3 تا 5 میلیمتر شود . برای این منظور می توان قطعه انتهایی تیغه و یا محل خار استپ را تنظیم نمود .
البته با تغییر محل جزئی مقره ستونی یا قطعه فلزی روی آن که جهت محافظت کنتاکت ثابت تعبیه شده است نیز هدف فوق حاصل می شود .برای پیشگیری از پیدایش حرارت اضافی , کنتاکت ها باید دارای اتصال کامل بوده و محکم باشند .
کنترل این مسئله به وسیله فیلر به ضخامت 5 0/0 میلیمتر و عرض 1 سانتیمتر صورت می گیرد . فنر تیغه های کلید در وضعیت بسته و باز باید بررسی شده , سطوح کنتاکت ها با نفت خام که دارای مقدار کمی گرافیت است آغشته شود و در قسمت هایی که اصطکاک وجود دارد با استفاده از گریس با نقطه انجماد پائین روغن کاری گردد .
به توصیه کارخانه های سازنده سطح کنتاکت های سکسیونر قابل قطع زیر بار باید با دی سولفات مولیبدن پوشانده شود .
این عمل ممکن است با قطعات دی سولفات مولیبدن که از نظر سختی شبیه مغز مداد تهیه شده است روی سط.ح کنتاکت و یا با ریختن محلول غلیظ آن روی موضع انجام شود . همچنین می توان قطعات کنتاکت را در محلول دی سولفات مولیبدن برای مدتی جوشاند .
سکسیونرهای قابل قطع زیر بار
این کلیدها برای قطع و وصل بارهای کم مخصوصا در مورد جریان مغناطیس کننده ترانس ها طراحی شد ه اند .
امروزه سکسیونرها برای قطع جریان مغناطیس کننده 110 کیلو ولت با ظرفیت MVA 63 نیز ساخته شدند که اغلب به صورت افقی نصب می شوند .
برای قطع جریان مغناطیس کننده ترانس ها و یا جریان شارژ خازنی کابل ها و خطوط هوایی با ولتاژ 35 کیلو ولت حداقل فاصله بین قطب ها 2 متر در نظر گرفته می شود .
در این صورت می تواند جریان مغناطیس کننده را حداکثر تا 11 آمپر و جریان شارژ خازنی خطوط را حداکثر5/3 آمپر قطع نماید.در صورتیکه اگر فاصله بین قطب ها سه متر باشد کلید قادر خواهد بود در سطح ولتاژ 110 کیلو ولت جریان شارژ خازنی خطوط ر1تا 5 امپر قطع کند .

ترانسفورماتورهای ولتاژ (p.t)
ترانس های ولتاژ ممکن است تکفاز یا سه فاز به صورت خشک و یا غوطه ور در روغن ساخته شوند و مشخصه اساسی این ترانس نسبت به تبدیل ولتاژ آن می باشد . دقت اندازه گیری یک ترانس ولتاژ که به کلاس دستگاه نیز مشهور است میزان خطای آن را مشخص می کند .
مثلا کلاس 2/0 مشخص می کند که خطای نسبت تبدیل ترانس2/0. + درصد بوده و ماکزیمم خطای زاویه فاز (اختلاف فاز بین ولتاژ اولیه و ثانویه ) در آن 10+ دقیقه می باشد .
کلاس 5/0 مربوط به ترانس ولتاژی با خطای نسبت تبدیل 5/0+ درصد و ماکزیمم خطای زاویه 20+ دقیقه بوده و کلاس 1 مربوط به ترانس ولتاژی به خطای نسبت تبدیل 1+ درصد و ماکزیمم خطای زاویه 40+ دقیقه می باشد و بالاخره دستگاهی که دارای کلاس 3 است خطای نسبت تبدیل آن 3+ درصد بوده و حد معینی برای خطای زاویه آن مشخص نشده است .
ترانس ولتاژ با کلاس 2/0 معمولاً برای اندازه گیریهای دقیق آزمایشگاهی دقیق آزمایشگاهی . یا به عنوان مبنای مقایسه برای چک کردن خطای ترانسهای دیگر بکار رفته و برای دستگاههای اندازه گیری معمولی از ترانس ولتاژ با کلاس 5/0 استفاده می شود و دستگاههای با کلاسهای 1و 2 نیز برای اتصال به تجهیزات با کلاس 5/0 و یا برای مدارات حفاظتی بکار می روند .
خطای واقعی ترانسفورماتورهای ولتاژ با بار مصرفی دستگاههایی که روی آن بسته شده اند و ولتاژ اولیه آن بستگی داشته و این ترانسفورماتورها تا ولتاژ 2- کیلو ولت ممکن است به صورت سه فاز ساخته شوند .
در عمل ترانس های اندازه گیری سه فاز به دو دسته تقسیم می شوند . یکی با هسته سه ستونی و دیگری با هسته پنچ ستونی . نوع سه ستونی که دارای اتصال y/y با گروه برداری صفر می باشد و مواد اولیه آن از زمین ایزوله می باشد ، برای اندازه گیری ولتاژ خطی شبکه بکار می روند .
نوع پنچ ستونی نیز Y/Y با گروه برداری صفر می باشد با این تفاوت که نقطه صفر مدار اولیه آن زمین می شود و برای اندازه گیری ولتاژ خطوط نسبت به زمین ،ولتاژ خطی شبکه و ولتاژ مولفه صفر بکار می رود .
یادآور می شود که برای اندازه گیری ولتاژ مولفه صفر از سه سیم پیچ کمکی که به صورت مثلث باز و روی سه فاز بسته می شود استفاده می کنند .
ایزولاسیون ترانسهایی که برای ولتاژهای بیش از 6 کیلو ولت ساخته می شوند اصولاً از کاغذ آغشته به روغن تشکیل شده و ترانسهای سه فاز و یا تکفاز برای ولتاژ 38/0 تا 6 کیلو ولت عموماً با ایزولاسیون خشک ساخته می شوند .
یک ترانس ولتاژ تحت سرویس باید از نظر کامل بودن سطح روغن و عدم نشت آن ، سالم بودن ایزولاتور چینی ، بی عیب بودن مقاومت های محدود کننده جریان و فیوز ها مورد بازرسی قرار گیرد . علاوه بر این کنتاکتهای ترانس و سطوح خارجی آن باید به مرتب تمیز شده و نمونه روغن آن تست شود . ضمناً نشان دهنده سطح روغن در این ترانسها باید بر حسب دمای محیط مدرج شده باشد .
ترانسفورماتورهای جریان ( C.T)
ترانسفورماتورهای جریان اصولاً در شبکه های متناوب جهت تامین جریان سیم پیچی سری دستگاه های اندازه گیری و رله های حفاظتی بکار برده شده و نسبت تبدیل آنها به صورتی انتخاب می شود که جریان نامی اولیه را به میزان یک یا 5 آمپر کاهش دهد.
لذا می توان برای اندازه گیری و حفاظت از دستگاهها و رله ها از ترانس های جریان استفاده نمود . یک ترانمس جریان هم در نسب تبدیل و هم در فاز (زاویه ) جریان دارای خطا بوده و در عمل دقت اندازه گیری ترانس که مبین میزان خطای آن نیز هست به کلاس دستگاه شهرت داشته و با ارقام 2/5 ، % ، 3 ، 1 و 10 مشخص می شود که در واقع مقدار ماکزیمم خطای ترانس را وقتی که جریان اولیه ان 1 تا 2/1 برابر مقدار نامی باشد نشان می دهند .
مثلاً ترانسفورماتوری با نسبت تبدیل 5/500 و کلاس 2/0 بدین معناست که وقتی جریان اولیه 500 آمپر است جریان ثانویه آن مقداری بین 2/ % +ـ 5 (یعنی 01/ 0 +ـ 5 ) آمپر را خواهد داشت در عمل خطای ترانس های جریان در شرایط اضافه بار افزایش می یابد .
از طرف دیگر با توجه به این که در ترانس جریان بر خلاف ترانس های معمولی ، جریان ثانویه فقط بستگی به میزان جریان اولیه داشته و از آمپدانس ثانویه مستقل می باشد . قدرت ظاهری ظاهری ترانس جریان بر حسب ولت – آمپر به صورت حاصل ضرب مجذور جریان ثانویه در آمپدانس کلی مدار ثانویه بیان می شود .
لذا با افزایش آمپدانس در مدار ثانویه یعنی در شرایطی که تعداد زیادی دستگاههای اندازه گیری و رله های حفاظتی به طور سری بسته شوند ، ترانس تحت اضافه بار قرار خواهد گرفت .
لذا مواقعی که فاصله بین ترانس جریان و دستگاه اندازه گیری نسبتاً زیاد است از ترانسی که جریان نامی ثانویه آن 1 آمپر است استفاده می شود .
در این صورت آمپدانس مدار ثانویه می تواند 25 برابر بزرگتر از ترانس با جریان ثانویه 5 آمپر باشد . معمولاً برای دستگاههای اندازه گیری از ترانس جریان با کلاس 5/0 ، برای مدارهای کنترلی از ترانس جریان با کلاس 1 و 3 و برای رله ها و مدارهای حفاظتی از ترانس جریان با کلاس 5/0 ، 1 ، 3 ، 10 استفاده شده و یادآور می شود که اصولاً خطای واقعی ترانس جریان به مقدار جریان اولیه به میزان بار آن بستگی دارد .
در مهندسی برق ، تحت سرویس قرار دادن ترانس جریان در حالی که مدار ثانویه آن باز است امری بسیار نا مقبول و غیر مجاز می باشد . زیرا در این حالت نیروی الکترو مغناطیسی صفر بوده و نتیجتاً در ترانس فقط نیروی الکترومغناطیسی اولیه که معمولاً مقدار زیادی است باقی مانده و موجب پیدایش ولتاژی چند هزار برابر مقدار نامی در سیم پیچ ثانویه می گردد که نه تنها عایق ترانس را در معرض انفجار قرار می دهد ، بلکه برای پرسنل حاضر در محل بسیار مخاطره آمیز است . استقامت الکترودینامیکی و حرارتی یک ترانس جریان طوری انتخاب می شود که بتواند در مقابل حرارت ناشی از جریان اتصال کوتاه مقاومت نماید .
بر این اساس ترانس های جریان به دو صورت تک حلقه ای و چند حلقه ای ساخته می شود که در نوع تک حلقه ای اولیه به منزله هسته برای سیم پیچ ثانویه می باشد ، نظیر ترانس های جریانی که روی باس بارها و کابلها قرار داده شده و یا جاسازی می شود و در نوع چند حلقه ای مدار اولیه نیز از چند حلقه تشکیل شده است .
در صنعت از چینی ، نوع آپوکسی و یا کاغذ به روغن جهت ایزولااسیون ترانس جریان استفاده می کنند . در شرایط سرویس دهی ، وضعیت ظاهری کنتاکتهای الکتریکی ، عملکرد دستگاههای اندازه گیری مربوطه و اتصال زمین ترانسفورماتور جریان باید مرتباً زیر نظر بوده و در مورد نوع روغنی ، س طح روغن با ویژگیهای شیمیایی و الکتریکی آن نیز کنترل شود .
در بستن مدار دستگاههای اندازه گیری و رله های حفاظتی باید نسبت به صحیح بودن پلاریته ترانس جریان دقت و توجه لازم را نمود .
در مورد ترانس های جر یان روغنی اگر در یک آزمایش ، استقامکت الکتریکی نمونه روغن و یا تانژانت دلتای آن از مقدار نرمال کاهش غیر مجاز نشان بدهد ، روغن را باید تخلیه کرده و ترانس را به روشهای مخصوص خشک نمود .
همچنین اگر در بازدید های روتین ملاحظه شود که به دلیل نشت های جزئی مقداری از روغن که حجم آن بیشتر از 10 % حجم کل مخزن ترانس می باشد از آن خارج شده است قطعاً باید عایق آن را خشک نمود . ولی اگر میزان کاهش روغن از حد فوق کمتر باشد می توان مخزن را با روغن خشک سر ریز نموده و علت نشت را بر طرف کرد .
ایزولاسیون یک C.T را ممکن است با عبور جریان در سیم پیچ اولایه در حالی که ثانویه اتصال کوتاه است و یا با عبور جریان از سیم پیچ ثانویه در حالی که اولیه اتصال کوتاه شده خشک نمود .
اگر ترانس های جریان تا 10 کیلو ولت را با عبور جریان در اولیه خشک نماییم ، مقدار این جریان باید به صورتی باشد که جریان در سیم پیچ ثانویه از 3/1 تا 4/1 برابر مقدار نامی بیشتر نشود و اگر با عبور جریان در سیم پیچ ثانویه خشک گردد میزان جریان اولیه نباید از 1/1تا 2/1 برابر مقدار نامی افزایش یابد .
ضمناً در خلال عملیات خشک سازینیز که معمولاً 15 تا 18 ساعت طول می کشد
در جه حرات قسمتهای مختلف C.T نباید از 70 الی 80 درجه سانتیگراد تجاور نماید . در مورد ترانسهای جریان تا 10 کیلو ولت اگر در خلال عملیات خشک سازری مقاومت اهمی ایزولاسیون برای مدت 3 تا 4 ساعت ثابت بماند مبین آن است که C.T به طور کامل خشک شده است .
برای آشکار نمودن نقاط ضعف احتمالی در عایق و همچنین برآورد میزان مقاومت آن در مقابل افزایش ولتاژ معمولاً تست فشار قوی روی C.T انجام می شود .

33


تعداد صفحات : 33 | فرمت فایل : WORD

بلافاصله بعد از پرداخت لینک دانلود فعال می شود